

Receiving Antenna Metrics With Examples

Steps Beyond Gain and F/B

World Wide Radio Operators Foundation

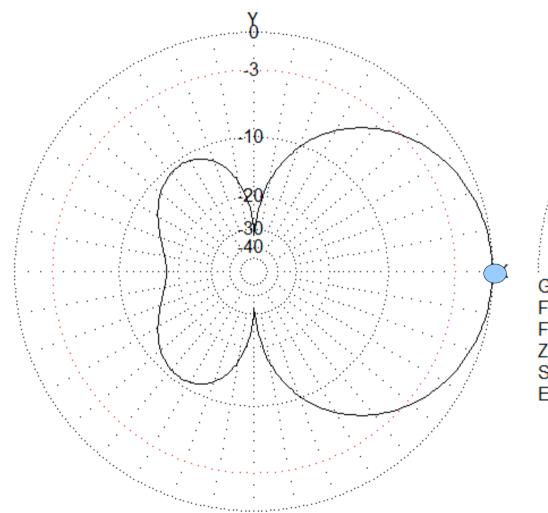
Jukka Klemola OH6LI Feb 13th 2018

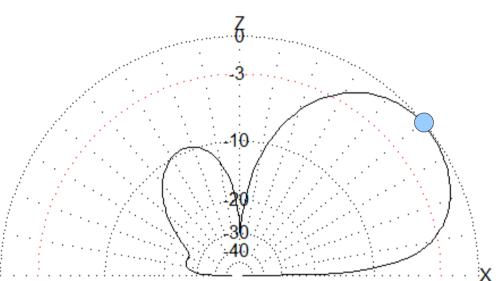
Practical

- Presentation is longer than typically seen on WWROF
- We will have a short break at about 45 minutes
- All antenna model files and the Excel Workbook RX Ant Metrics will be availale via WWROF
- As you have questions, please write them down. Presentation is long
- Q&A at the end

Contributors

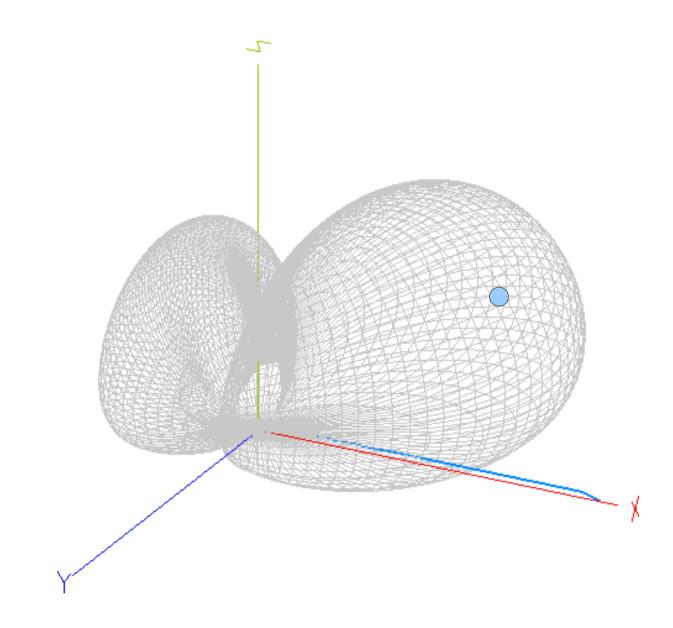
- Markku OH2RA
- Dan AC6LA
- Frank W3LPL
- Reino OH3MA
- Maik DJ2QV
- Ward N0AX



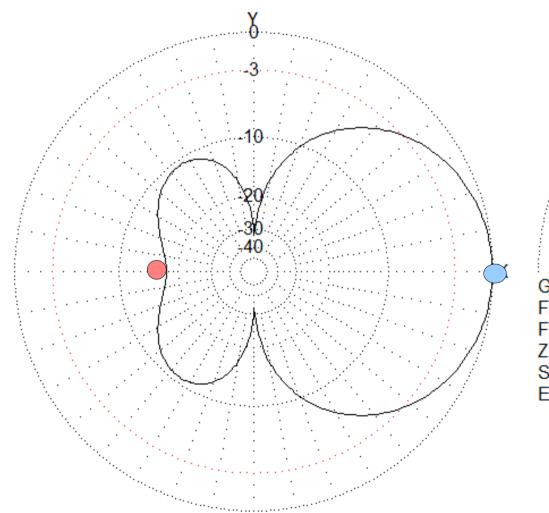

Contents

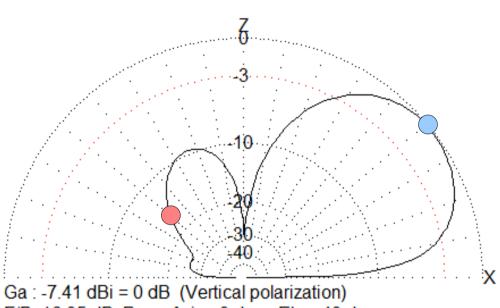
- Traditional Metrics Gmax, F/B
- Receiving Directivity Factor
- Directivity Merit Figure
- Noise Margin
- Leaking Index
- Receiving antennas for residential locations
- Better decent size antennas for rural locations
 - Linear Inline Receiving Array

Antenna Gain Maximum

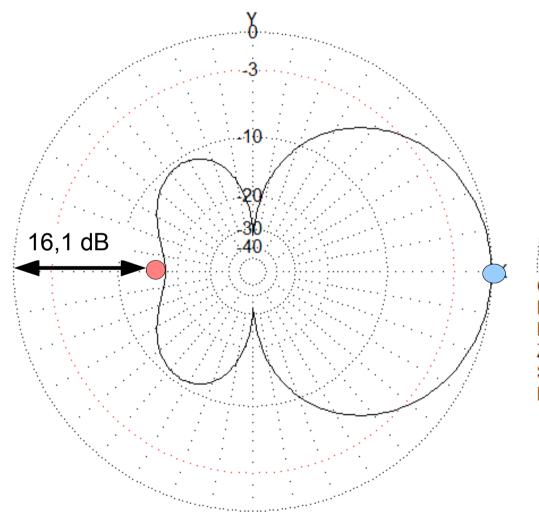


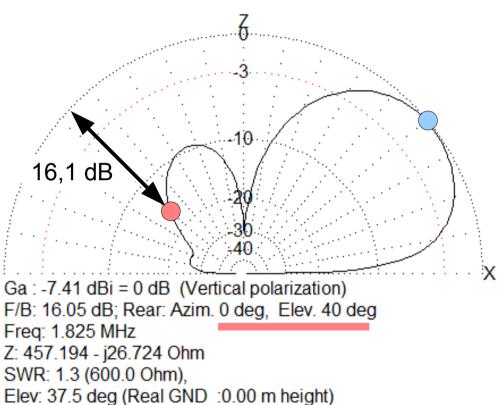
Ga : -7.41 dBi = 0 dB (Vertical polarization) F/B: 16.05 dB; Rear: Azim. 0 deg, Elev. 40 deg Freq: 1.825 MHz Z: 457.194 - j26.724 Ohm SWR: 1.3 (600.0 Ohm), Elev: 37.5 deg (Real GND :0.00 m height)



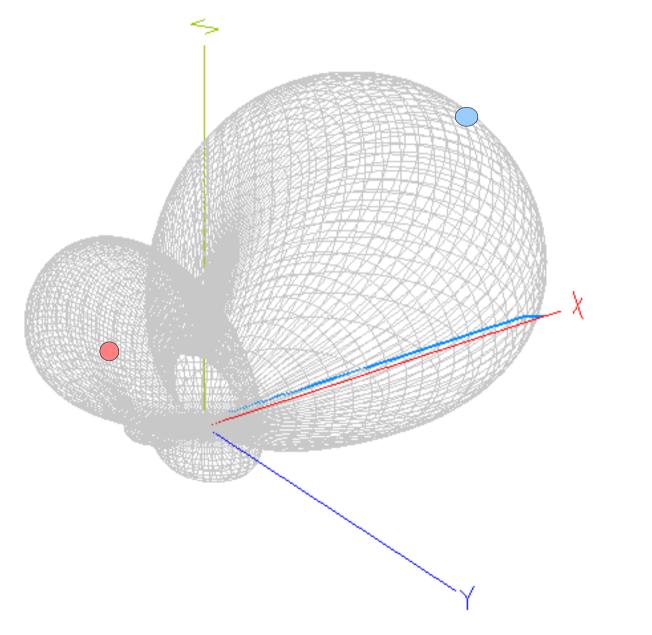

Antenna Gain Maximum

Antenna Front-to-Back





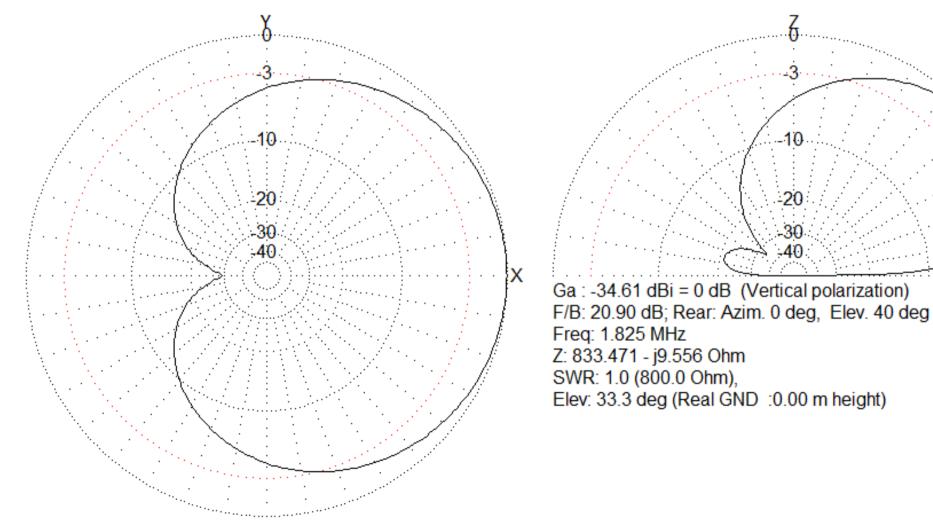
Ga : -7.41 dBI = 0 dB (Vertical polarization) F/B: 16.05 dB; Rear: Azim. 0 deg, Elev. 40 deg Freq: 1.825 MHz Z: 457.194 - j26.724 Ohm SWR: 1.3 (600.0 Ohm), Elev: 37.5 deg (Real GND :0.00 m height)


Antenna Front-to-Back

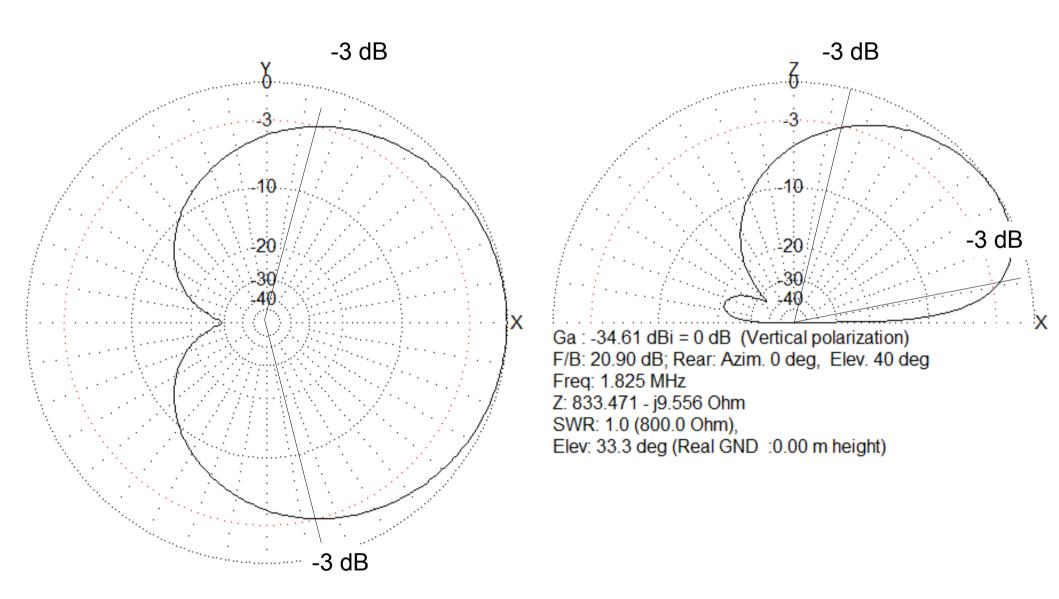
Antenna Front-to-Back

X

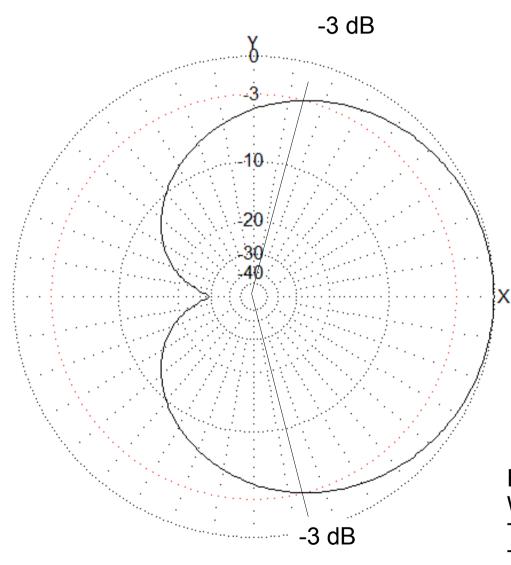
10

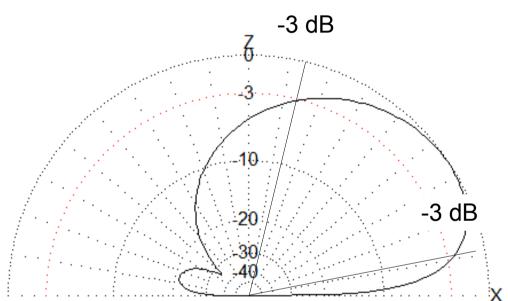

20

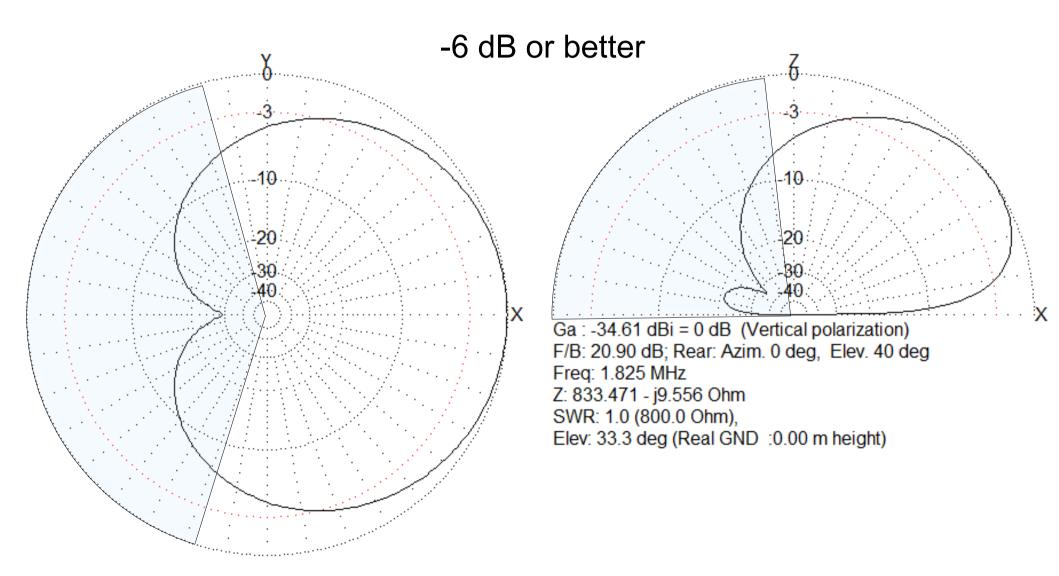
30

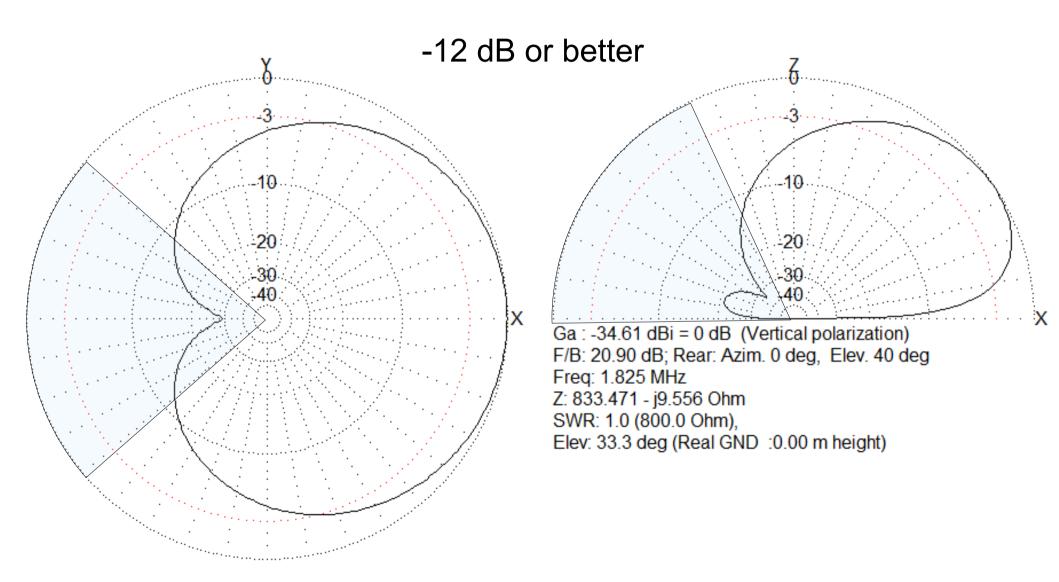

40

Cardioid Pattern Antenna

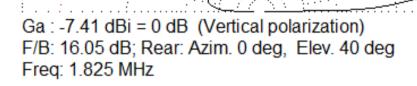

0.5wl BOG, Flag, 2xGP



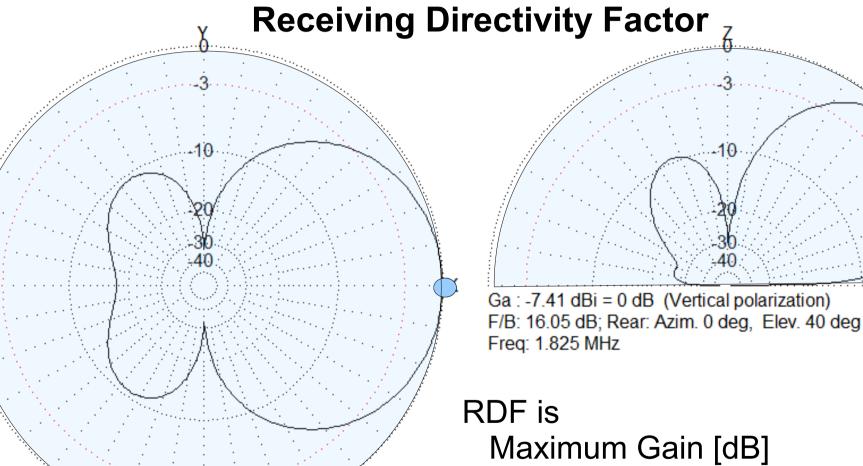



Ga : -34.61 dBi = 0 dB (Vertical polarization) F/B: 20.90 dB; Rear: Azim. 0 deg, Elev. 40 deg Freq: 1.825 MHz Z: 833.471 - j9.556 Ohm SWR: 1.0 (800.0 Ohm), Elev: 33.3 deg (Real GND :0.00 m height)

For a receiving antenna Which is considered the 'Better' direction The receiving sector on right or The attenuated sector on the left?



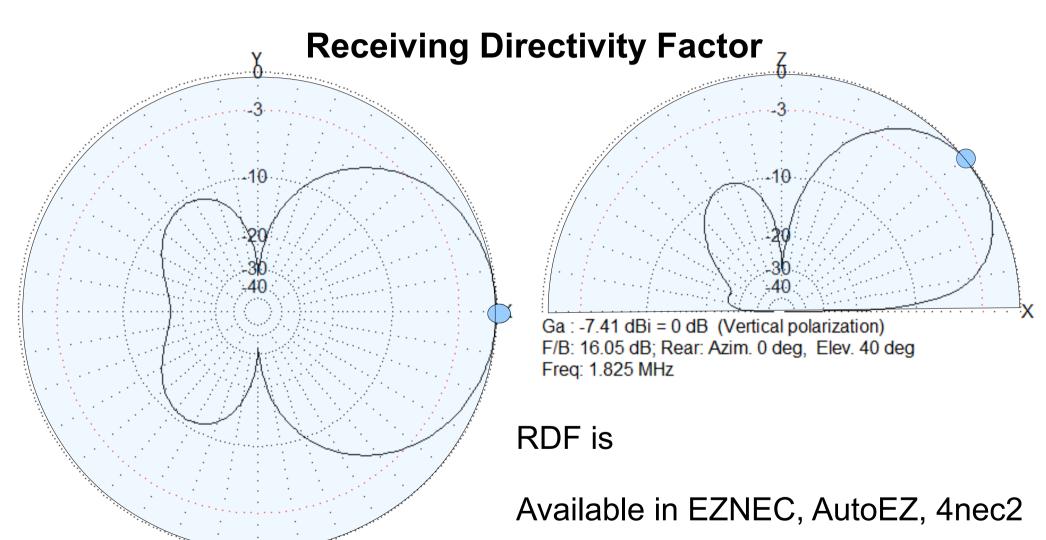
Modern Metrics

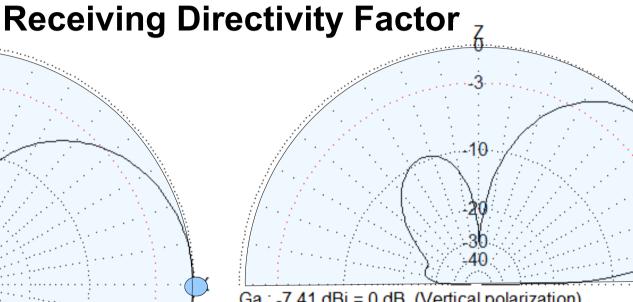


-10

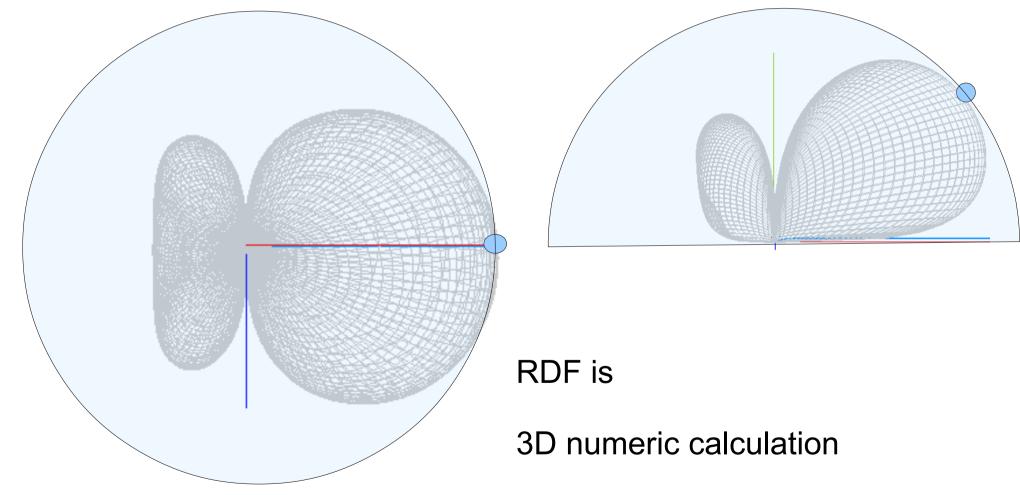
RDF is <u>Maximum Gain</u> Average Gain

Calculated through full hemisphere

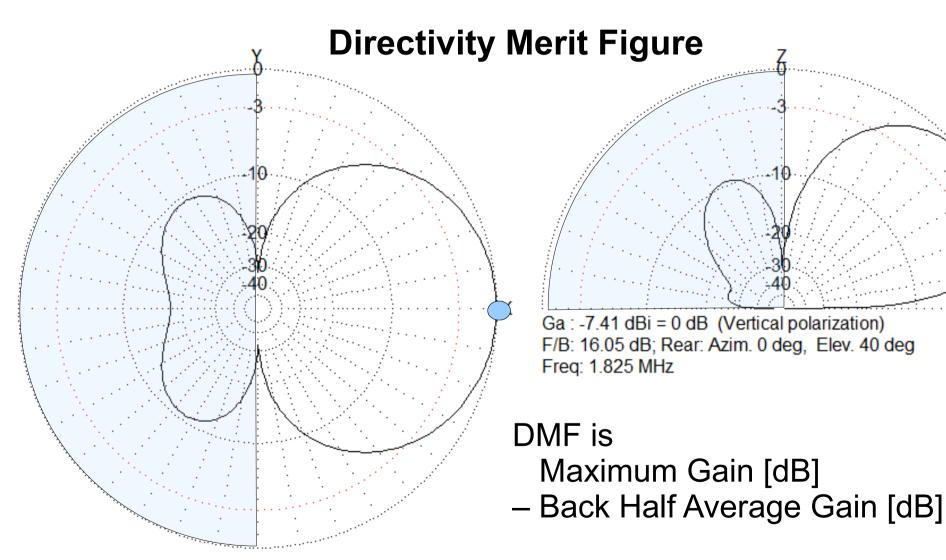



– Average Gain [dB]

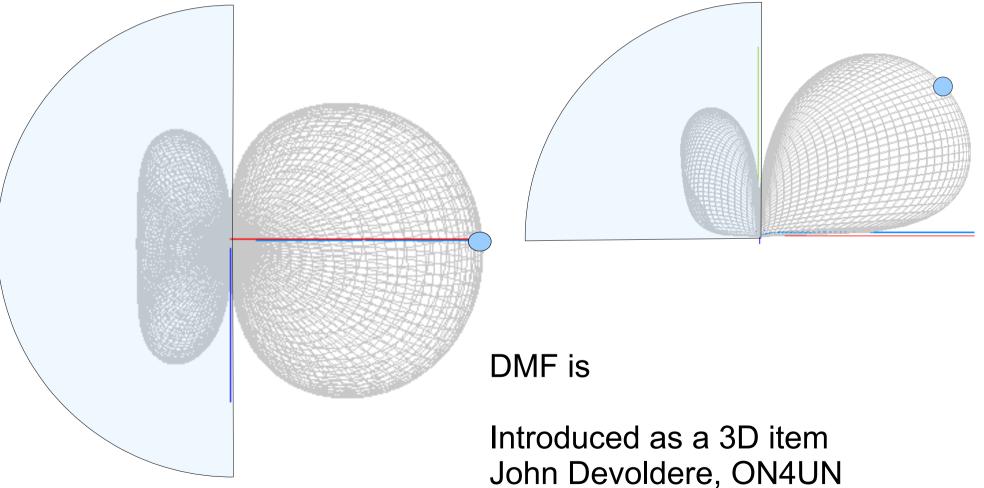
Calculated through full hemisphere


Ga : -7.41 dBi = 0 dB (Vertical polarization) F/B: 16.05 dB; Rear: Azim. 0 deg, Elev. 40 deg Freq: 1.825 MHz

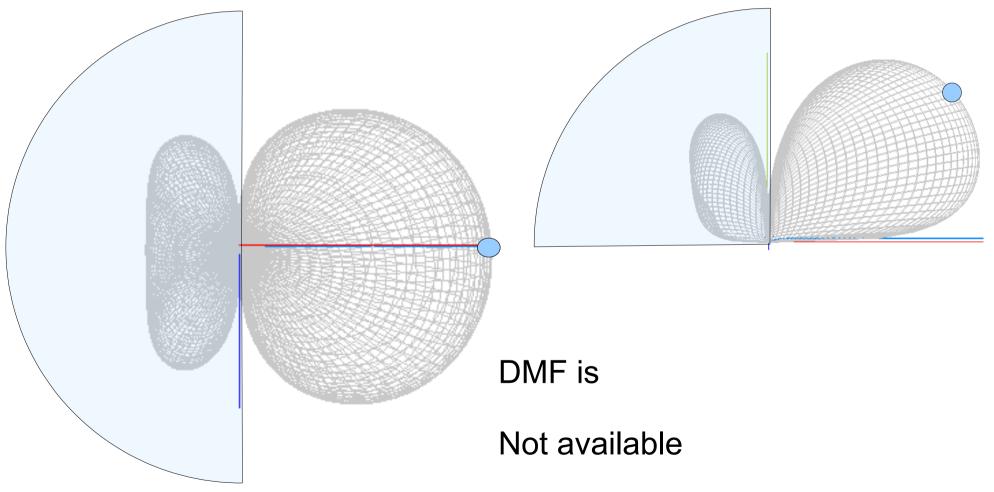
RDF


Principle introduced by John Devoldere, ON4UN, Low Band DXing, Chapter 7

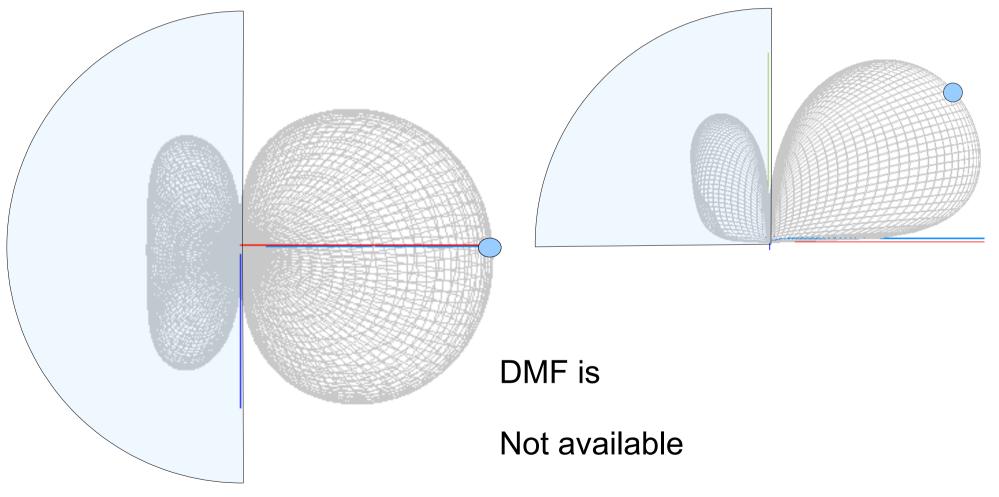
Receiving Directivity Factor



Calculated through back half hemisphere


Directivity Merit Figure

Low Band DXing, Chapter 7



Directivity Merit Figure

Directivity Merit Figure

Solution release in this presentation

What are the Metrics Good For?

- Previously unanswered questions:
- Does my system hear noise from the band or am I limited by electronics thermal noise?

What are the Metrics Good For?

- Previously unanswered questions:
- Does my system hear noise from the band or am I limited by electronics thermal noise?
- How small my directional antenna can be and still receive the noise from the band?

What are the Metrics Good For?

- Previously unanswered questions:
- Does my system hear noise from the band or am I limited by electronics thermal noise?
- How small my directional antenna can be and still receive the noise from the band?
- Which antenna pattern is better?

RX Antenna Development

Small antennas

RX Antenna Development

- Small antennas
 - Flag, FO0AAA, DoubleKAZ, phased antennas
- Optimize the antenna size
- Solution proposal in this presentation

- Most antennas produce side lobes
 - Pattern may leak despite overall average is good
- Solution proposal in this presentation

RX Antenna Development

- New small antennas use a load to form the pattern
- Antenna's gain is typically negative in dBi
- Need to design antenna system level sensitivity
- Best S/N by cleanest pattern
 + adequate amplification

- Transmit antennas integrate all noise
 - Transmit antennas' receiving S/N grows by Gmax

Antenna Metrics Development

- Computers bring opportunities
- True 3D pattern data available
- Idea to Need to Requirement to Specification
- Calculating is easy

Antenna Pattern Data

Sample based 3D pattern into Excel Dan, AC6LA, made an automated input for MMANA Table Angle / Gain and for EZNEC and 4nec2 .pf3 files MMANA uses MININEC EZNEC and 4nec2 use NEC

Antenna Pattern Data

Sample based 3D pattern into Excel Dan, AC6LA, made an automated input for MMANA Table Angle / Gain and for EZNEC and 4nec2 .pf3 files MMANA uses MININEC EZNEC and 4nec2 use NEC

Zenith, Azimuth, Gain at 1 degree resolution First calculus to steradians

Math basics: hemisphere surface is 2 Pi

Data to Metrics

Sample based 3D pattern into Excel Dan, AC6LA, made an automated input for MMANA Table Angle / Gain and for EZNEC and 4nec2 .pf3 files MMANA is MININEC while EZNEC and 4nec2 use NEC engine

Math basics: hemisphere surface is 2 Pi Zenith, Azimuth, Gain at 1 degree resolution First calculus to steradians Then average gain to get RDF and back half average to get DMF

RX Ant Metrics Workbook

Read MMANA .csv File

RX Ant Metrics v16.xlsm

	1										_								
	Α	В	C	D	E	F	G	Н		J	Μ	N	0	P	Q	R			
1	ZENITH(D	AZIMUTH	VERT(d	HORI(d	TOTAL(dB	Pwr	Th1	Th2	dA(sr)	Pwr*dA		MMANA csv C EZNEC/4nec2 pfB Source Type							
2	0	0	-93,03	-999	-93,03	4,98E-10	0	0,5	3,32E-07	1,65E-16									
3	1	0	-81,29	-999	-81,29	7,43E-09	0,5	1,5	2,66E-06	1,98E-14		User input							
4	2	0	-76,33	-999	-76,33	2,33E-08	1,5	2,5	5,32E-06	1,24E-13		1	Step size	, deg	(Make chai	nges to			
5	3	0	-73,1	-999	-73,1	4,9E-08	2,5	3,5	7,97E-06	3,9E-13		EPÄTOSI	Free space	ce?	these two	these two cells only.)			
6	4	0	-70,68	-999	-70,68	8,55E-08	3,5	4,5	1,06E-05	9,08E-13	L								
7	5	0	-68,73	-999	-68,73	1,34E-07	4,5	5,5	1,33E-05	1,78E-12		1) Set the values above as desired.							
8	6	0	-67,1	-999	-67,1	1,95E-07	5,5	6,5	1,59E-05	3,1E-12		2) In MMANA, click File > Table of Angle/Gain then use							
9	7	0	-65,68	-999	-65,68	2,7E-07	6,5	7,5	1,86E-05	5,02E-12		these parameters in the dialog window (not here).							
10	8	0	-64,44	-999	-64,44	3,6E-07	7,5	8,5	2,12E-05	7,63E-12			Start	Step	Num				
11	9	0	-63,32	-999	-63,32	4,66E-07	8,5	9,5	2,38E-05	1,11E-11		Azimuth	0	1	361	Total			
12	10	0	-62,31	-999	-62,31	5,87E-07	9,5	10,5	2,64E-05	1,55E-11		Zenith	0	1	91	32851			
13	11	0	-61,38	-999	-61,38	7,28E-07	10,5	11,5	2,91E-05	2,12E-11		3) Click this	button to c	opy the fi	le data into c	olumns A-E			
14	12	0	-60,52	-999	-60,52	8,87E-07	11,5	12,5	3,17E-05	2,81E-11									
15	13	0	-59,73	-999	-59,73	1,06E-06	12,5	13,5	3,43E-05	3,65E-11			Read MMANA						
16	14	0	-58,99	-999	-58,99	1,26E-06	13,5	14,5	3,68E-05	4,65E-11		CSV	csv File						

RX Ant Metrics Workbook

Read MMANA .csv File

		Set	paramete	rs in t	he table Ar	ngle/gain				×								
RX Ant Metrics v16.x				Start deg.		Step deg.		Num. of steps					N	0	Р		0	D
1	A B	Azimut		0.0		1		361			J r*dA	Μ	MMANA		ZNEC/4ne	c2 pf	Q 3 Source	R Type
2	0	Zenith		0.0		1		91		5	5E-16	Г	Line in the				_	
3 4	2										8E-14 4E-13		User input 1	Step size	, deg		(Make chang	es to
5	3	C:VAntenna_name.csv .9E-13										EPÄTOSI	Free space	e?		these two ce	lls only.)	
6 7	4	OK Cancel									8E-13 8E-12		1) Set the ve	lues above	ac desir	e d		
8	6	0 -67,1 -999 -67,1 1,95E-07 5,5 6,5 1,59E-05							_	1E-12		 Set the values above as desired. In MMANA, click File > Table of Angle/Gain then use 						
9	7	0	-65,68	-999	-65,68		6,5	7,5	1,86E-05		, 5,02E-12		these parameters in the dialog window (not here).					
10	8	0	-64,44	-999	-64,44	3,6E-07	7,5	8,5	2,12E-05	7,6	7,63E-12			Start	Step	0	Num	
11	9	0	-63,32	-999	-63,32	4,66E-07	8,5	9,5	2,38E-05	1,11E-11			Azimuth	0	1		361	Total
12	10	0	-62,31	-999	-62,31	5,87E-07	9,5	10,5	2,64E-05	1,55E-11			Zenith	0	1		91	32851
13	11	0	-61,38	-999	-61,38	7,28E-07	10,5	11,5	2,91E-05	2,12E-11			3) Click this	button to c	opy the f	ile d	ata into col	umns A-E.
14	12	0	-60,52	-999	-60,52	8,87E-07	11,5	12,5	3,17E-05	2,8	2,81E-11		Decilar					
15	13	0	-59,73	-999	-59,73	1,06E-06	12,5	13,5	3,43E-05	3,6	5E-11		Read M csv F					
16	14	0	-58,99	-999	-58,99	1,26E-06	13,5	14,5	3,68E-05	4,6	4,65E-11		CSV F	ne				

RX Ant Metrics Workbook

Read EZNEC or 4nec2 pf3 File

RX Ant Metrics v16.xlsm

	А	В	С	D	E	F	G	Н	I.	J	M	N	0	Р	Q	R	
1	ZENITH(D	AZIMUTH	VERT(d	HORI(d	TOTAL(dB	Pwr	Th1	Th2	dA(sr)	Pwr*dA		O MMANA csv	● E	ZNEC/4nec2 pf	3 Source	туре	
2	0	0	-93,03	-999	-93,03	4,98E-10	0	0,5	3,32E-07	1,65E-16	Г						
3	1	0	-81,29	-999	-81,29	7,43E-09	0,5	1,5	2,66E-06	1,98E-14		With EZNEC: O					
4	2	0	-76,33	-999	-76,33	2,33E-08	1,5	2,5	5,32E-06	1,24E-13		Save 3D Plot. E	ntera	file name t	nen click S	ave.	
5	3	0	-73,1	-999	-73,1	4,9E-08	2,5	3,5	7,97E-06	3,9E-13		Mith A		Ale - Une ale al		-	
6	4	0	-70,68	-999	-70,68	8,55E-08	3,5	4,5	1,06E-05	9,08E-13		With AutoEZ: E					
7	5	0	-68,73	-999	-68,73	1,34E-07	4,5	5,5	1,33E-05	1,78E-12		Calculations" option. A file named \$AutoEZ\$n.PF3, where "n" is the test case number, will be written					
8	6	0	-67,1	-999	-67,1	1,95E-07	5,5	6,5	1,59E-05	3,1E-12							
9	7	0	-65,68	-999	-65,68	2,7E-07	6,5	7,5	1,86E-05	5,02E-12							
10	8	0	-64,44	-999	-64,44	3,6E-07	7,5	8,5	2,12E-05	7,63E-12		With 4nec2: Cl	ick Cal	lculate > Far	Field pat	tern>Full.	
11	9	0	-63,32	-999	-63,32	4,66E-07	8,5	9,5	2,38E-05	1,11E-11		On the Pattern	windo	ow, Transfer	>Export >	> Full/3D.	
12	10	0	-62,31	-999	-62,31	5,87E-07	9,5	10,5	2,64E-05	1,55E-11							
13	11	0	-61,38	-999	-61,38	7,28E-07	10,5	11,5	2,91E-05	2,12E-11		Step size and Fi	ree spa	ace are dedu	iced from	the file.	
14	12	0	-60,52	-999	-60,52	8,87E-07	11,5	12,5	3,17E-05	2,81E-11							
15	13	0	-59,73	-999	-59,73	1,06E-06	12,5	13,5	3,43E-05	3,65E-11		Read EZNEC/4	nec2				
16	14	0	-58,99	-999	-58,99	1,26E-06	13,5	14,5	3,68E-05	4,65E-11		pf3 File					

N	RX Ant Metri	cs v16.xlsm														
	А	В	С	D	E	F	G	Н	I.	J	М	N	0	Р	Q	R
1	ZENITH(D	AZIMUTH(VERT(d	HORI(d	TOTAL(dB	Pwr	Th1	Th2	dA(sr)	Pwr*dA		MMANA	csv 🔿 EZ	ZNEC/4nec2 p	B Source	Туре
17	15	0	-21,08	-999	-21,08	0,007798	14,5	15,5	3,94E-05	3,07E-07		06 Beverag	ge 250m.cs	v		
18	16	0	-22,91	-999	-22,91	0,005117	15,5	16,5	4,2E-05	2,15E-07						
19	17	0	-25,37	-999	-25,37	0,002904	16,5	17,5	4,45E-05	1,29E-07		-4,6	Max 3D G	ain, dBi	(at Az = 0°,	EI = 31°)
20	18	0	-28,93	-999	-28,93	0,001279	17,5	18,5	4,71E-05	6,02E-08		-16,8	Avg Gain,	dB		
21	19	0	-34,69	-999	-34,69	0,00034	18,5	19,5	4,96E-05	1,68E-08		12,2	RDF, dB (Max - Avg)		
22	20	0	-37,49	-999	-37,49	0,000178	19,5	20,5	5,21E-05	9,28E-09		RDF: Recei	ving Direct	tivity Facto	r	
23	21	0	-30,56	-999	-30,56	0,000879	20,5	21,5	5,46E-05	4,8E-08						
24	22	0	-26	-999	-26	0,002512	21,5	22,5	5,71E-05	1,43E-07		-24,7	Back Half	Avg Gain,	dB	
25	23	0	-22,89	-999	-22,89	0,00514	22,5	23,5	5,95E-05	3,06E-07		20,1	DMF, dB	(Max - Back	(Half Avg)	
26	24	0	-20,56	-999	-20,56	0,00879	23,5	24,5	6,19E-05	5,45E-07		DMF: Direc	tivity Mer	it Figure		
14 - 4	AV	g Gain RDF	DMF 2	Noise M	argin 🕺 Le	aking Index	2 Su	mmary o	of Metrics							

Front sheet - Avg Gain RDF DMF

RDF algorithm same as EZNEC DMF available as a new item

🖳 I	RX A	nt Metrics v16.xlsm									
	Α	В	С	D	E	F	G	Н	I.	J	
1											
2			User input								
3		Noise Level P.372-13	46	dB							
4		Feed System Losses	2	dB		Result	:				
5		RX Noise Figure	4	dB		No	ise Margin	0,5 dB	above ele	ectronics n	oise
6											
7											
8		Notes									
9		NoiseMargin = NoiseLevel + AverageGain -3 dB - FeedSystemLosses - NoiseFigure									
10		Receiving antenna gain is	typically ne	egative	in dBi						
11		AverageGain is "Avg Gain	RDF DMF" s	sheet N	120						
12											
13		Noise Level from Figure 1	l0 of P.372-1	L3 docu	ment:	https:	//www.itu	.int/dms_p	ubrec/itu-	r/rec/p/R-	REC-
14		46 dB on 160 at a quiet ru	ral receivin	g site, r	ninimu	m nois	e level exp	ected: P.3	72-13 Figur	re 2	
15		64 dB on 160 at a resident	ial receivin	g site, ı	mediar	value					
16		38 dB on 80 at a quiet rural site, minimum noise level expected									
17		56 dB on 80 at a residenti	al site, med	ian val	ue						
18		The distribution around t	he median	value c	urves i	s descr	ibed in Rad	lio Noise d	ocument T	able 2	
19		The Noise Margin should	be several	dB to a	chieve	good a	ntenna sys	tem perfor	mance in a	all conditio	ns
H 4	•	Avg Gain RDF DMF	oise Margin	Leal	king Ind	ex 🏑	Summary of	Metrics /	2/		

Noise Margin estimates if the receiving system is limited by electronics thermal noise

That is, if antenna's Average Gain is big enough to hear the band noise over the receiver's thermal electronics noise

🔊 (RX A	nt Metrics v16.xlsm								
	А	В	С	D	Е	F	G	Н		
1										
2						Result:				
							dB below	3 level		
3							Max Gain	analysis		
4			User input				12	8,4%		
5		Begin at azimuth	80	degrees			18	48,3%		
6		End at azimuth	280	degrees			24	73,0%		
7						Lea	king Index	43,2 %		
8										
9		Notes								
10										
11		Leaking Index tells	how much	the anten	na pat	tern leaks	to unwant	ed directio	ns	
12		User can set the az	imuth range	e, default i	s 80 to	280 degre	es			
13		Zenith range is fixe	ed 0 to 90 de	egrees						
14										
15		The antenna is better when								
16		-smaller proportion of pattern leaks								
17		-any leaking is att	enuated mo	re						
14 4	•	Avg Gain RDF D	MF 🏑 Noise	Margin 📜 L	eakin	g Index 🦯	Summary o	f Metrics	<u> </u>	

Leaking Index tells if the antenna pattern leaks outside the Main Lobe

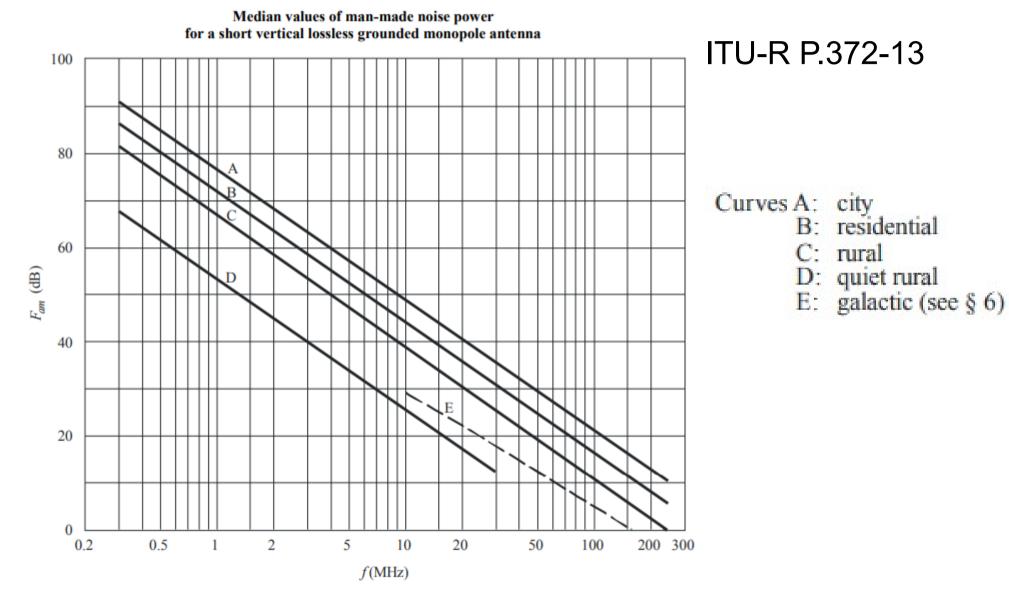
RX Ant Metrics v17p.xlsm

1	А	В	С	D	E	F	G	Н	l I	J	К	M	N	0
1	Summary of Metrics							RX Ant M	Metrics v1	7p.xlsm				
2														
3	A new summary row is automatica	ally add	ed each	time a	data fi	le is re	ad.	Road	MMANA					
4	Copy/paste data below as desired	l to a ne	w work	book.					v File					
5	Delete any rows that are no longer needed.						-							
							Back		QTH	Noise	Leaking			
		Gmax	At	At	Gaver	RDF	Gaver	DMF	Noise Lvl	Margin	Index	Length	Width	Height
6	Antenna pattern file name	dBi	Azim	Elev	dB	dB	dB	dB	dB	dB	%	m	m	m
7	05 Beverage 170m.csv	-7,4	0°	39°	-18,0	10,6	-24,6	17,2	46	19,0	51,4	170,0	2,0	3,0
8	06 Beverage 250m.csv	-4,6	0°	31°	-16,8	12,2	-24,7	20,1	46	20,2	43,2	250,0	2,0	3,0
9	07 Twin Triangle v02.csv	-23,3	0°	26°	-34,5	11,2	-43,5	20,1	46	2,5	41,8	58,0	3,0	12,5
I I	Avg Gain RDF DMF / Noise	Margin	Leaki	ng Inde	x 🔍 Su	mmary	of Met	trics	2/					

Summary of Metrics gives an easy to copypaste data set to a collection workbook

New Antenna Metrics Explained

- The Sky provides noise to antenna
- Noise is mostly man-made or atmospheric
- Directional antenna receives noise by calculated average gain in relation to full hemisphere noise
- Smaller antenna with smaller amplification receives less noise


- The Sky provides noise to antenna
- Noise is mostly man-made or atmospheric
- Directional antenna receives noise by calculated average gain in relation to full hemisphere noise
- Smaller antenna with smaller amplification receives less noise
- To hear the weak signals, the noise level received from the Sky must exceed the noise of electronics, the thermal noise, by a margin

- We can calculate the noise power we receive
- Thermal electronics noise equals Noise Figure
- We want to have a small, yet highly directive antenna and receive the smallest possible signals
- That is, we want to hear the band noise at main lobe -3dB points and have the smallest feasible antenna
- We need to understand and evaluate the antenna system Noise Margin

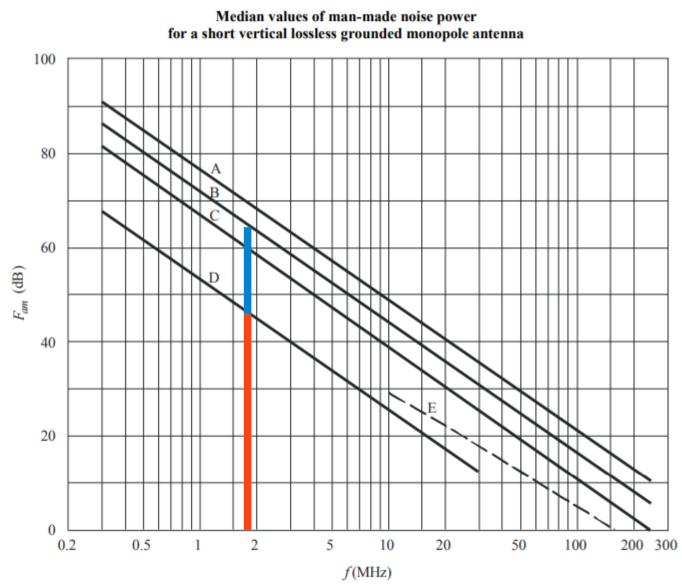
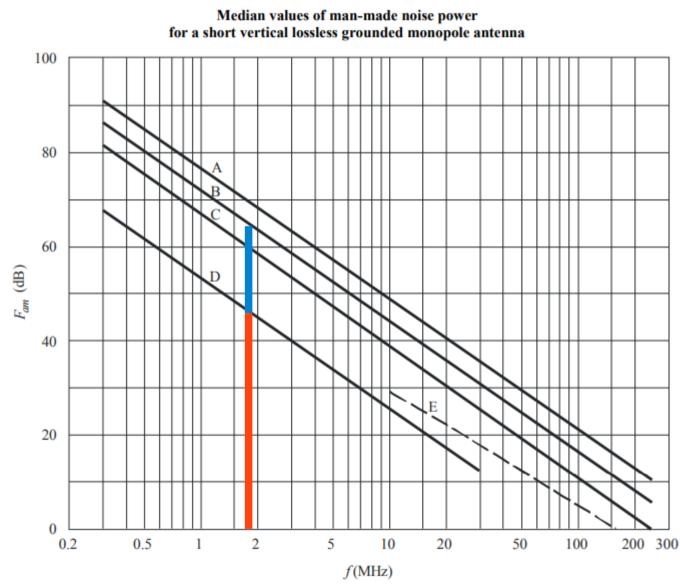


FIGURE 10

FIGURE 10

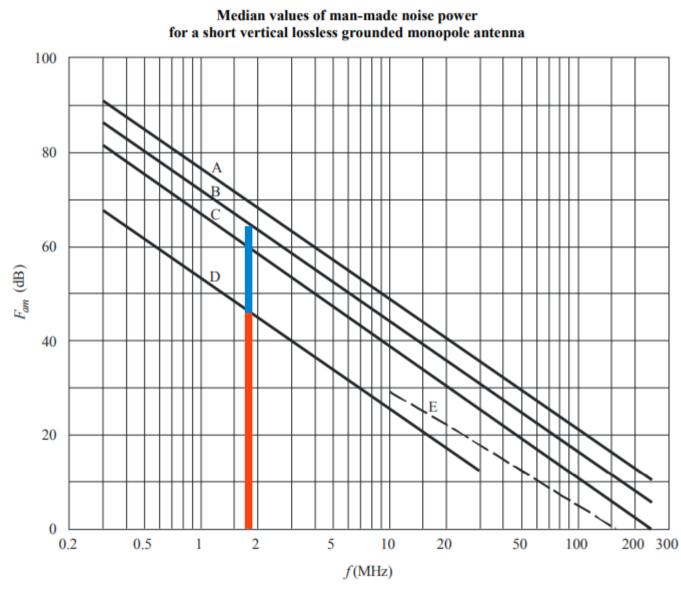

ITU-R P.372-13

Shows 46 dB noise on 160 at 1Hz bandwidth for a quiet rural receiving site

64dB for a residential area receiving site

FIGURE 10

ITU-R P.372-13


Shows 46 dB noise on 160 at 1Hz bandwidth for a quiet rural receiving site

64dB for a residential area receiving site

Validation for Noise Level comes from ITU

FIGURE 10

ITU-R P.372-13

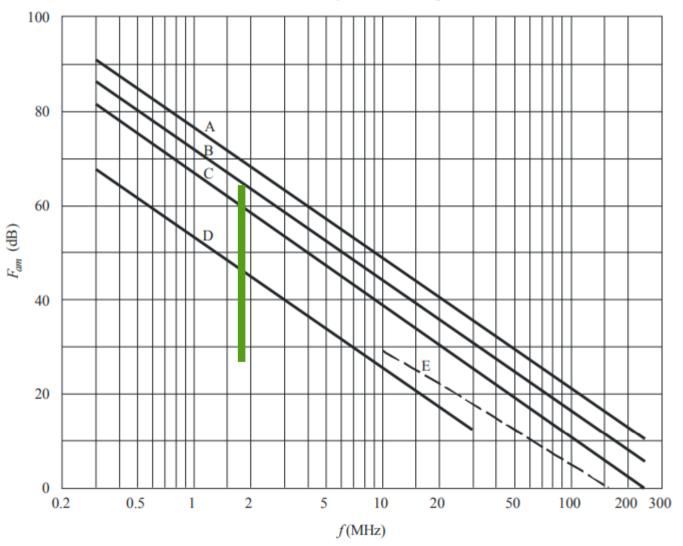
Shows 46 dB noise on 160 at 1Hz bandwidth for a quiet rural receiving site

64dB for a residential area receiving site

A B C Noise Levels are statistical median

D is minimum noise level expected

Noise Distribution

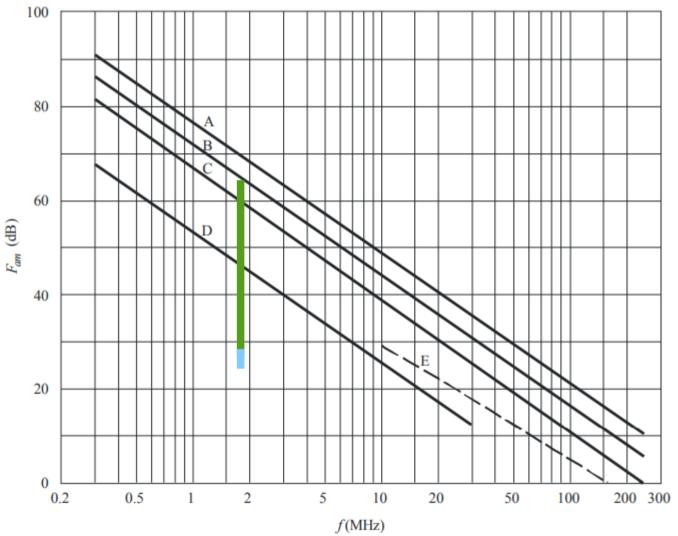

- Noise distribution is even for dA(sr) steradian surface elements through the hemisphere
- Noise Mask can be used but Excel file size grows from 5MB level to 8M+
- Low angle man-made noise likely dominates
- 0 to 2 degrees elevation gain is small, attenuates the low angle noise, lowers importance
- Low angle emphasizing noise mask algorithm prototyping showed less than 1 dB difference
- Noise Margin algorithm can be improved

Noise Level

FIGURE 10

Median values of man-made noise power for a short vertical lossless grounded monopole antenna

Calculate in dB:


Noise Level + Antenna Gaverage

Noise Level at Connector

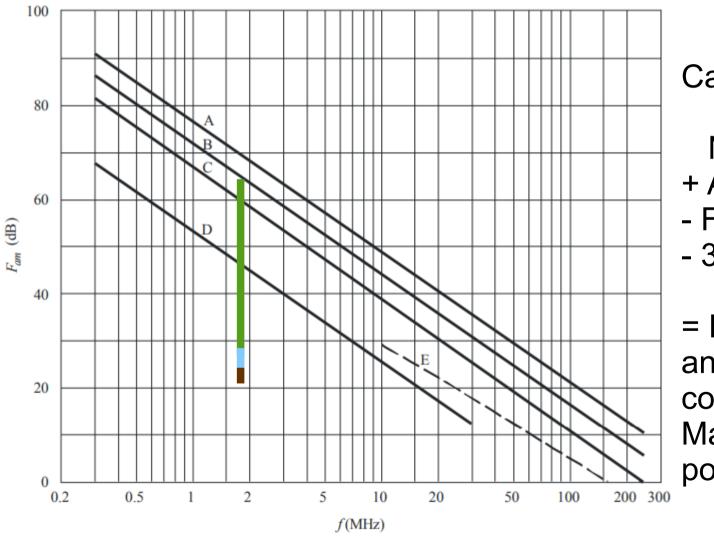
FIGURE 10

Median values of man-made noise power for a short vertical lossless grounded monopole antenna

Calculate in dB:

Noise Level + Antenna Gaverage

- Feed System Losses


 Noise Level at antenna system output connector at Main Lobe Gmax

Noise Level at -3dB points

FIGURE 10

Median values of man-made noise power for a short vertical lossless grounded monopole antenna

Calculate in dB:

Noise Level

- + Antenna Gaverage
- Feed System Losses
 3 dB

Noise Level at antenna system output connector at Main Lobe – 3 dB points

Receiver Noise Figure

FIGURE 10

Median values of man-made noise power for a short vertical lossless grounded monopole antenna

RX Noise Figure

Receiver Noise Figure stands on the bottom, limiting the receiving system sensitivity

Noise Margin

FIGURE 10

Median values of man-made noise power for a short vertical lossless grounded monopole antenna

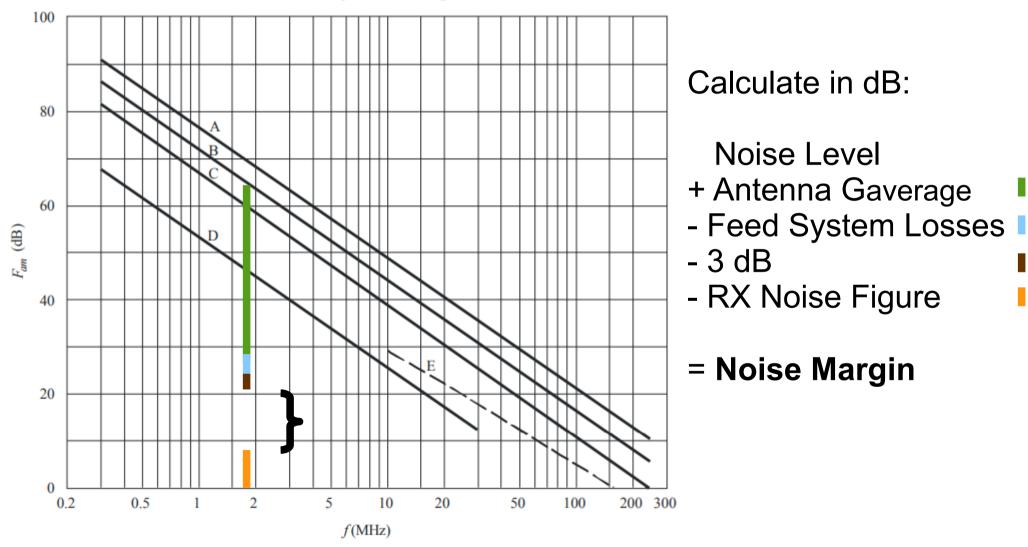
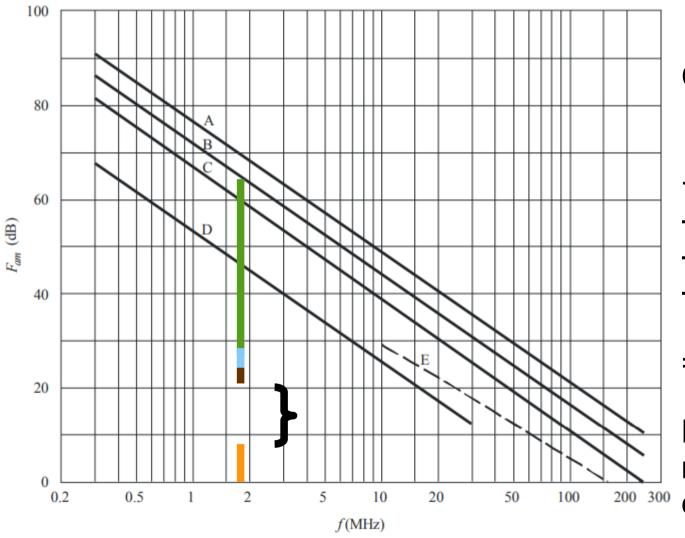



FIGURE 10

Median values of man-made noise power for a short vertical lossless grounded monopole antenna

Calculate in dB:

Noise Level

- + Antenna Gaverage
- Feed System Losses
- 3 dB
- RX Noise Figure

= Noise Margin

Noise Margin gives room for Noise Level changes

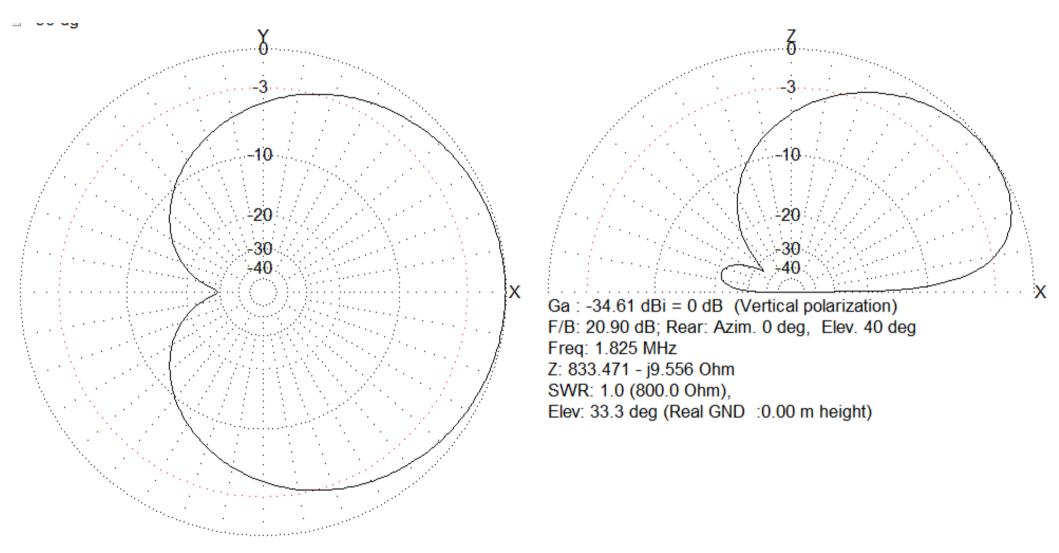
Noise Margin in RX Ant Metrics

RX Ant Metrics v16.xlsm

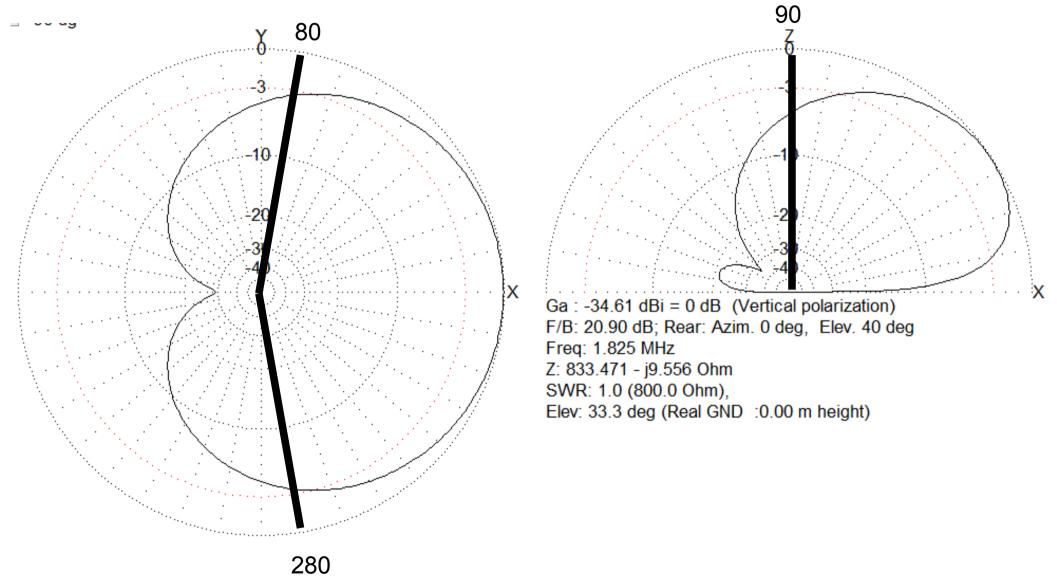
	Α	В	С	D	E	F	G	Н	1	J	K
1											
2			User input								
3		Noise Level P.372-13	46	dB							
4		Feed System Losses	2	dB		Result	:				
5		RX Noise Figure	4	dB		No	ise Margin	0,5 dB	above ele	ectronics n	oise
6											
7											
8		Notes									
9		NoiseMargin = NoiseLeve	el + Average	Gain -3	dB - Fe	eedSys	temLosses	- NoiseFig	ure		
0.		Receiving antenna gain is	typically ne	egative	in dBi						
1		AverageGain is "Avg Gain	RDF DMF" s	heet N	120						
12											
.3		Noise Level from Figure 1	0 of P.372-1	.3 docu	ment:	https:	//www.itu	int/dms_p	ubrec/itu-	r/rec/p/R-I	REC-P.372
.4		46 dB on 160 at a quiet ru	ral receiving	g site, r	ninimu	ım nois	e level exp	ected: P.3	72-13 Figur	e 2	
.5		64 dB on 160 at a resident	ial receiving	g site, I	mediar	n value					
16		38 dB on 80 at a quiet rura	al site, minir	mum n	oise le	vel exp	ected				
17		56 dB on 80 at a residenti	al site, med	ian val	ue						
18		The distribution around t	he median v	value c	urves i	s descr	ibed in Rad	io Noise d	ocument Ta	able 2	
19		The Noise Margin should	be several of	dB to a	chieve	good a	ntenna syst	tem perfor	mance in a	II conditio	ns

Noise Margin in RX Ant Metrics

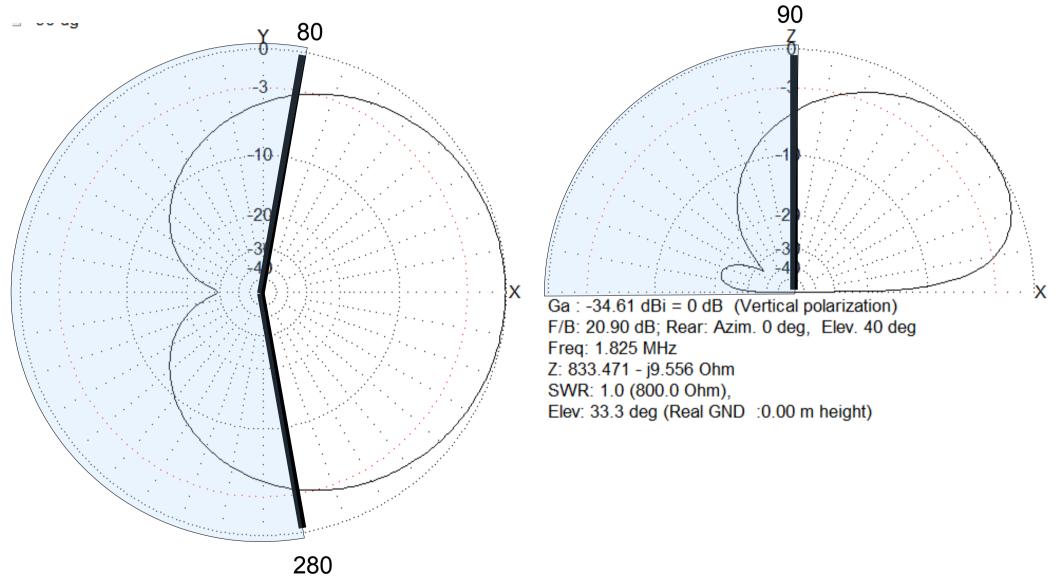
21	RX Noise Figure is typically 3 to 5 dB. Specific preamplifiers may have smaller numbers
22	Feed System Losses is all losses from all transformers, cables, possible relays and
23	filtering before radio or preamplifier
24	
25	-3 dB comes from requirement to receive Main Lobe's Gmax - 3 dB points
ne 14 4	Avg Gain RDF DMF Noise Margin Leaking Index Summary of Metrics 2

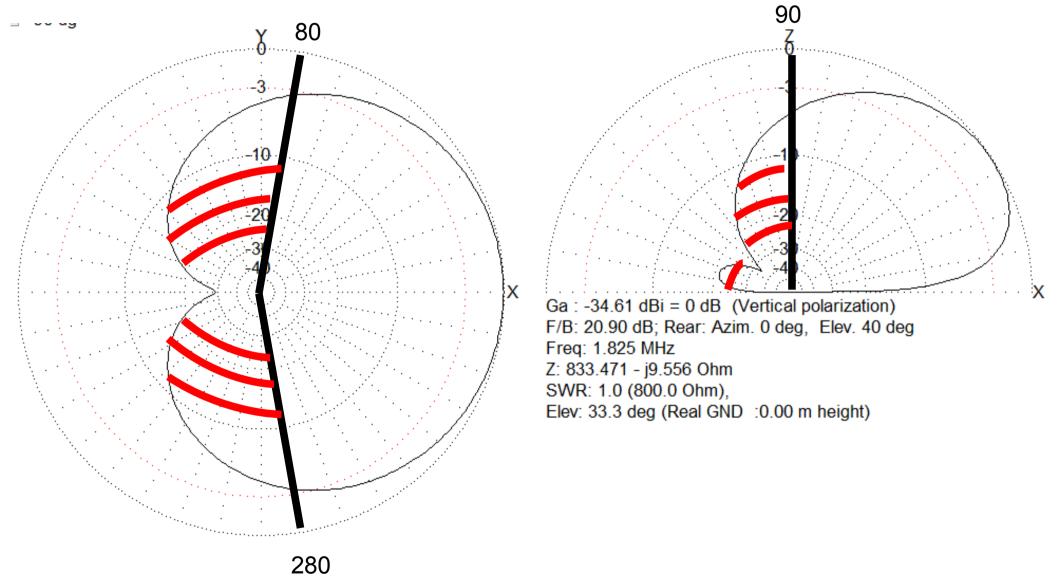


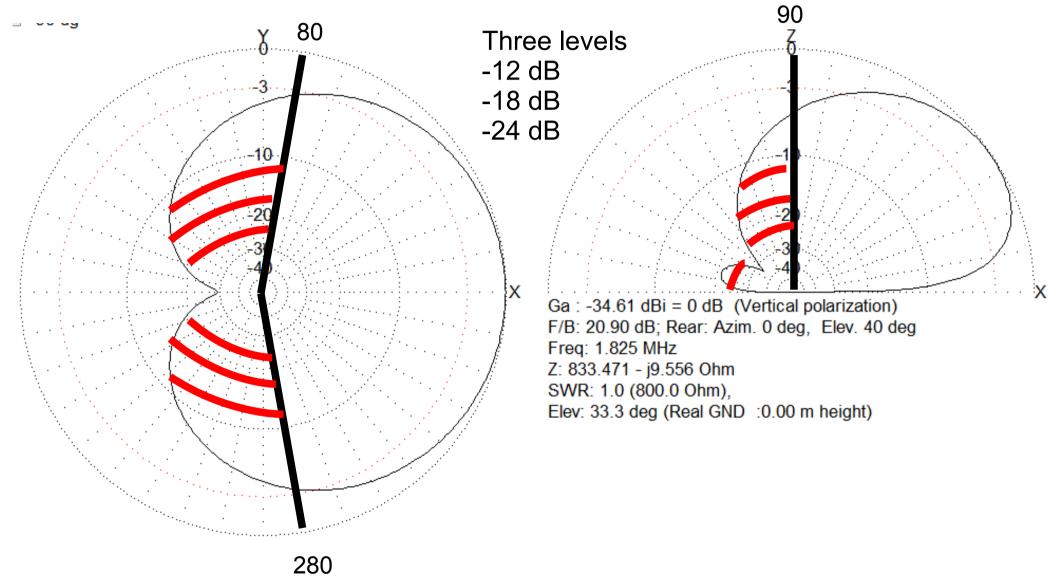
 Leaking Index tells how much the antenna pattern leaks to unwanted directions



- Leaking Index tells how much the antenna pattern leaks to unwanted directions
 - Default 80 to 280 degrees Azimuth
- The antenna is better when
 - Smaller proportion of pattern leaks
 - Any leaking is attenuated more
- The percentage of leaking is calculated at three levels; Gmax -12 dB, -18 dB and -24 dB.
- Leaking Index is the average percentage of leaking at these three levels







Leaking Index in RX Ant Metrics

A I	rx a	nt Metrics v16.xlsm							
	Α	В	С	D	E	F	G	Н	
1									
2						Result:			
							dB below	3 level	
3							Max Gain	analysis	
4			User input				12	57,2%	
5		Begin at azimuth	80	degrees			18	78,3%	
6		End at azimuth	280	degrees			24	92,6%	
7						Lea	king Index	76,0 %	
8									
9		Notes							
10									
11		Leaking Index tells	how much	the anteni	na pat	tern leaks	to unwant	ed directio	ns
12		User can set the az	imuth range	e, default i	s 80 to	280 degre	es		
13		Zenith range is fixe	ed 0 to 90 de	egrees					
14									
15		The antenna is bet	ter when						
16		-smaller proportio	on of pattern	n leaks					
17		-any leaking is atte	enuated mo	ore					

Leaking Index in RX Ant Metrics

19	The	The percentage of leaking is calculated at three levels; Gmax -12 dB, -18 dB and -24 dB								
20	Lea	Leaking index is the average percentage of leaking at these three levels								
21										
22	The	e user can set the azimuth range un-evenly to support asymmetrical antenna patterns,								
23	suc	h as for example phased systems may show								
24	Ma	Maximum Gain direction must be roughly into direction Az=0 to produce correct results								
25	De	fault values are 80 and 280 degrees.								
26										
27	As	a comparison, the DMF calculation uses fixed azimuth 90 to 270 degrees								
28										
	• • •	Avg Gain RDF DMF 🖉 Noise Margin 🔪 Leaking Index 🧹 Summary of Metrics 🛒 🖏 🦯								

Leaking Index Bottom Line

- RDF and DMF are general averaging calculations
- Leaking Index brings up only the amount of leaking
- Leaking index calculates more than back half and is configurable for narrower Main Lobes
- Leaking Index can be the final decision making criteria where RDF and DMF provide unclear differentiation between antennas

Leaking Index Limitations

- Leaking index is currently limited to 0-90 elevation
- Forward looking high elevation angles are not counted in

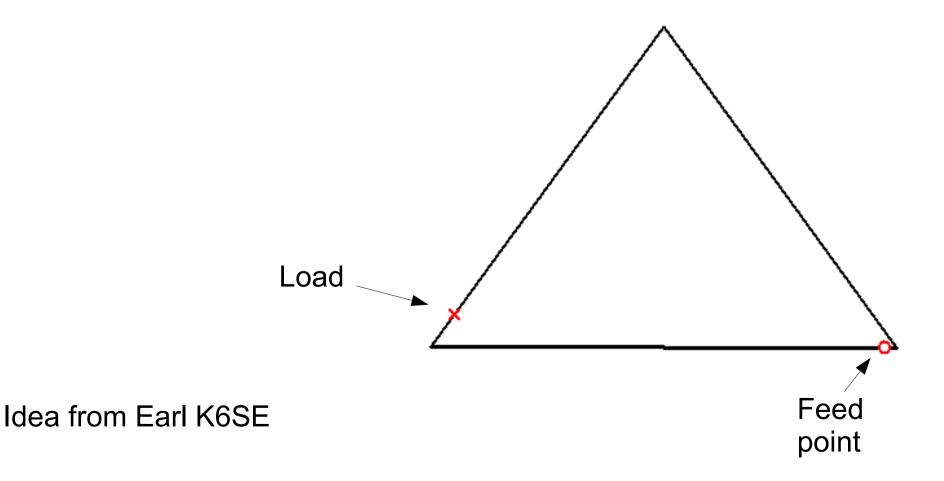
 Leaking Index drives to improve the pattern to -24 dB level, not further

• Leaking Index algorithm can be improved

Examples

Examples

- Various antenna examples
- Also a new antenna concept



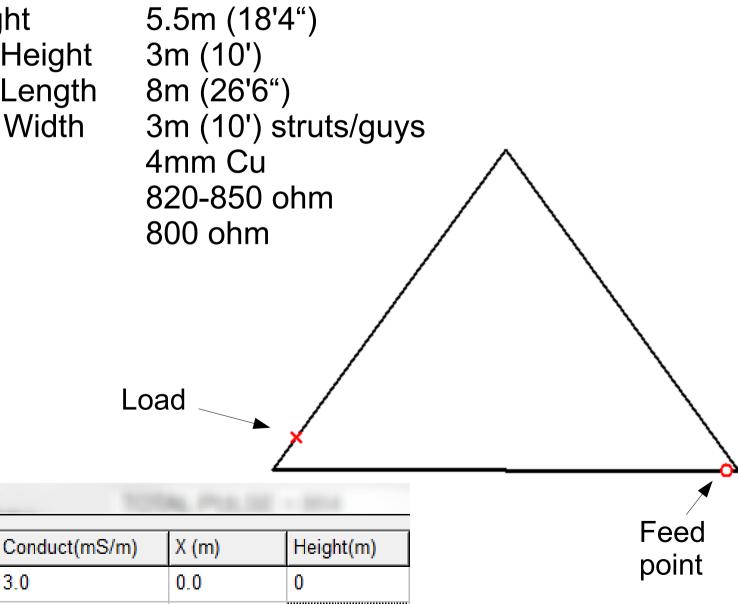
Examples

- FO0AAA triangle / delta
- Beverage
- Twin Triangle
- Linear Inline targetX Antenna LIXA
- Staggered beverage
- Linear Inline Receiving Array LIRA

Triangle Antenna

Triangle Antenna

Triangle Height Bottom Wire Height Bottom Wire Length Construction Width Wire Load Feed


For all antennas

Dielec.

13.0

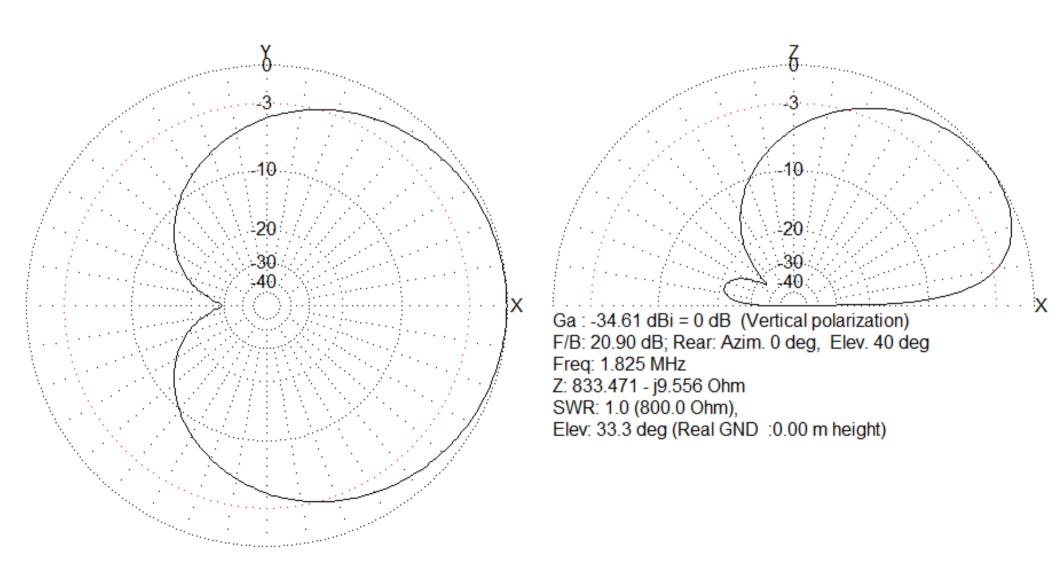
Real ground setup

No.

Triangle Antenna

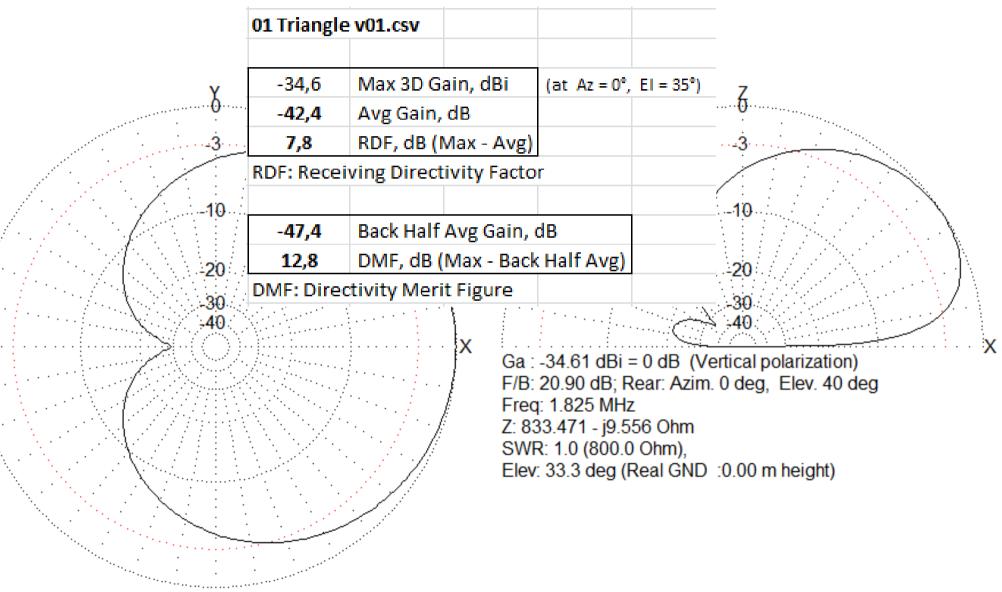
Triangle Height5.5m (18'4")Bottom Wire Height3m (10')Bottom Wire Length8m (26'6")Construction Width3m (10') struts/guysWire4mm CuLoad820-850 ohmFeed800 ohm

Load placement optimized for pattern


Load

Almost like FO0AAA triangle/delta by Earl K6SE

Feed point



Triangle Metrics

Triangle RDF, DMF

	User input								
Noise Level P.372-13	46	dB							
Feed System Losses	2	dB		Result	:				
RX Noise Figure	4	dB		No	ise Margin	-5,4 dB	above el	ectronics no	oise
Notes									
NoiseMargin = NoiseLeve	el + Average	Gain -3	3 dB - F	eedSys	temLosses	- NoiseFig	ure		
Receiving antenna gain is	s typically ne	egative	e in dBi						
AverageGain is "Avg Gain	RDF DMF" s	sheet N	120						
Noise Level from Figure 2	10 of P.372-1	l3 docu	ument:	https:	//www.itu	.int/dms_p	ubrec/itu-	r/rec/p/R-R	EC-P.372-13
46 dB on 160 at a quiet ru	ral receiving	g site, i	minimu	um nois	e level exp	ected: P.3	72-13 Figur	re 2	
64 dB on 160 at a resident	tial receivin	g site,	mediar	n value					
38 dB on 80 at a quiet rur	al site, mini	mum n	oise le	vel exp	ected				
56 dB on 80 at a residenti	al site, med	ian val	ue						
The distribution around t	he median	value o	urves i	s descr	ibed in Rad	lio Noise d	ocument T	able 2	
The Noise Margin should	be several	dB to a	chieve	good a	ntenna sys	tem perfor	mance in a	all conditior	าร

					I				
	User input				Quie	t Rura			
Noise Level P.372-13	46	dB							
Feed System Losses	2	dB		Result	:				
RX Noise Figure	4	dB		No	ise Margin	-5,4 dB	above ele	ectronics no	oise
Notes									
NoiseMargin = NoiseLeve	el + Average	Gain -3	3 dB - Fe	eedSys	temLosses	- NoiseFigu	ire		
Receiving antenna gain is	s typically n	egative	e in dBi						
AverageGain is "Avg Gair	RDF DMF"	sheet N	120						
Noise Level from Figure	10 of P.372-1	L3 docu	iment:	https:	//www.itu.	int/dms p	ubrec/itu-	r/rec/p/R-F	REC-P.372-
46 dB on 160 at a quiet ru	ral receiving	g site, r	ninimu	ım nois	e level exp	ected: P.37	2-13 Figur	e 2	
64 dB on 160 at a residen	tial receivin	g site, i	mediar	n value					
38 dB on 80 at a quiet rur	al site, mini	mum n	oise le	vel exp	ected				
56 dB on 80 at a residenti	al site, med	ian val	ue						
The distribution around t	he median	value c	urves i	s descri	ibed in Rad	io Noise do	cument T	able 2	
The Noise Margin should	be several	dB to a	chieve	good a	ntenna syst	tem perfor	mance in a	all condition	ns

	User input				Resi	idential	QTH		
Noise Level P.372-13	64	dB ◄							
Feed System Losses	2	dB		Result					
RX Noise Figure	4	dB		Noi	se Margin	12,6 dB	above ele	ectronics n	oise
Notes									
NoiseMargin = NoiseLeve	el + Average	Gain -3	dB - Fe	edSyst	emLosses	- NoiseFigu	re		
Receiving antenna gain is	s typically ne	egative	e in dBi						
AverageGain is "Avg Gain	RDF DMF"	sheet N	120						
Noise Level from Figure 1	LO of P.372-1	L3 docu	iment:	https:/	//www.itu	.int/dms_pu	ubrec/itu-	r/rec/p/R-I	REC-P.372-13
46 dB on 160 at a quiet ru	ral receiving	g site, r	ninimu	m noise	e level exp	ected: P.37	2-13 Figur	e 2	
64 dB on 160 at a resident	tial receivin	g site, i	median	value					
38 dB on 80 at a quiet rura	al site, mini	mum n	oise lev	vel exp	ected				
56 dB on 80 at a residenti	al site, med	ian val	ue						
The distribution around t	he median	value c	urves is	s descri	bed in Rad	lio Noise do	cument Ta	able 2	
The Noise Margin should	be several	dB to a	chieve	good ar	ntenna sys	tem perforr	mance in a	II conditio	ns

					·	I I I			
	User input				Resi	identia	QTH		
Noise Level P.372-13	64	dB					•		
Feed System Losses	2	dB		Result	:				
RX Noise Figure	4	dB		Noi	ise <mark>Margi</mark> n	12,6 dB	above ele	ectronics no	oise
Notes									
NoiseMargin = NoiseLeve	el + Average	Gain -3	3 dB - Fe	edSyst	temLosses	- NoiseFigu	ire		
Receiving antenna gain is	s typically ne	egative	e in <mark>d</mark> Bi						
AverageGain is "Avg Gain	RDF DMF" 9	sheet N	V20						
Noise Level from Figure 1	L0 of P.372-1	L3 docu	ument:	https:/	//www.itu	.int/dms_p	ubrec/itu-	r/rec/p/R-F	REC-P.372-13
46 dB on 160 at a quiet ru	ral receiving	g site, r	minimu	m nois	e level exp	ected: P.37	'2-13 Figur	e 2	
64 dB on 160 at a resident	tial receivin	g site, i	median	value					

-5.4 dB to 12.6 dB difference comes from change to Residential from Quiet Rural

					·		1		<u> </u>
	User input				Resi	identia	I QTH		
Noise Level P.372-13	64	dB							
Feed System Losses	2	dB		Result	:				
RX Noise Figure	4	dB		Noi	se Margin	12,6 dB	above electronics noi		oise
Notes									
NoiseMargin = NoiseLeve	el + Average	Gain -3	3 dB - Fe	eedSyst	temLosses	- NoiseFig	ure		
Receiving antenna gain is	s typically n	egative	e in dBi						
AverageGain is "Avg Gair	RDF DMF"	sheet N	V20						
Noise Level from Figure :	10 of P.372-1	L3 docu	ument:	https:/	//www.itu	.int/dms_p	ubrec/itu-	r/rec/p/R-F	REC-P.372-13
46 dB on 160 at a quiet ru	ral receivin	g site, i	minimu	m nois	e level exp	pected: P.3	72-13 Figur	re 2	
64 dB on 160 at a residen	tial receivin	g site,	median	value					

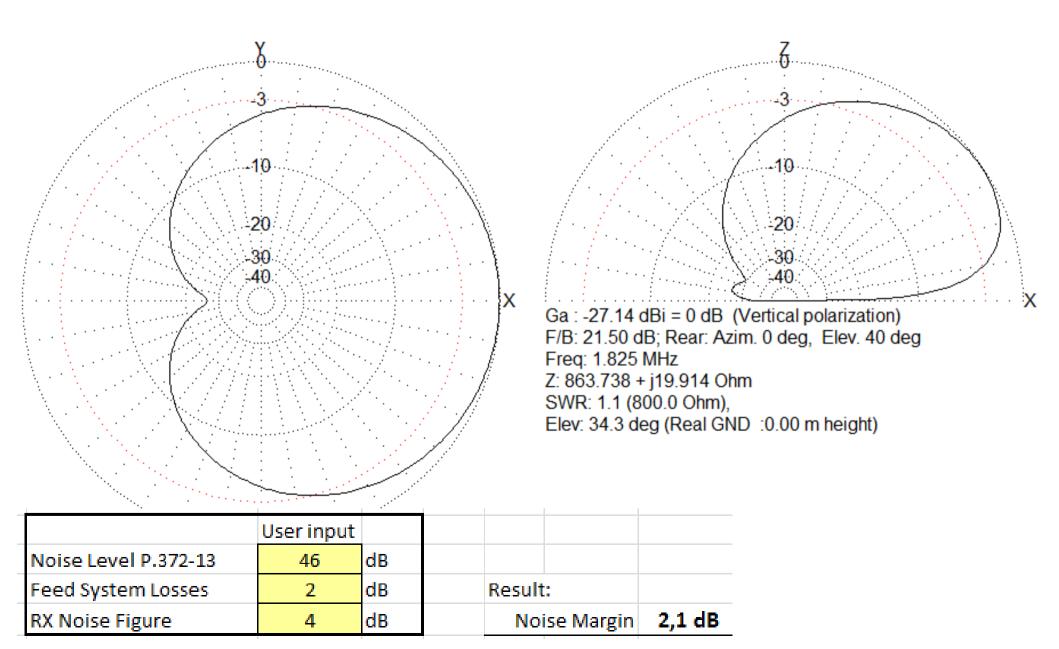
-5,4 dB to 12,6 dB difference comes from change to Residential from Quiet Rural That equals receiving site Noise Level change from 46 dB to 64 dB

Triangle Leaking Index

				Result:			
					d <mark>B below</mark> Max Gain	3 level analysis	
	User input				12	56,9%	
Begin at azimuth	80	degrees			18	79,1%	
End at azimuth	280	degrees			24	94,0%	
				Lea	king Index	76,7 %	
Notes							
Leaking Index tells	how much	the anten	na pattern	leaks to ur	nwanted di	rections	
User can set the az	imuth range	e, default i	s 80 to 280	degrees			
Zenith range is fixe	ed 0 to 90 de	egrees					
The antenna is bet	ter when						
-smaller proportio	on of patter	n leaks					
-any leaking is att	enuated mo	ore					
The percentage of	leaking is c	alculated a	t three lev	els; Gmax -	12 dB, -18	dB and -24	dB
Leaking index is th	e average p	ercentage	of leaking	at these th	nree levels		

Comparison

						Back		QTH	Noise	Leaking			
	Gmax	At	At	Gaver	RDF	Gaver	DMF	Noise Lvl	Margin	Index	Length	Width	Height
Antenna pattern file name	dBi	Azim	Elev	dB	dB	dB	dB	dB	dB	%	m	m	m
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	46	-5,4	76,7	8,0	3,0	8,5
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	64	12,6	76,7	8,0	3,0	8,5



Bigger Triangle

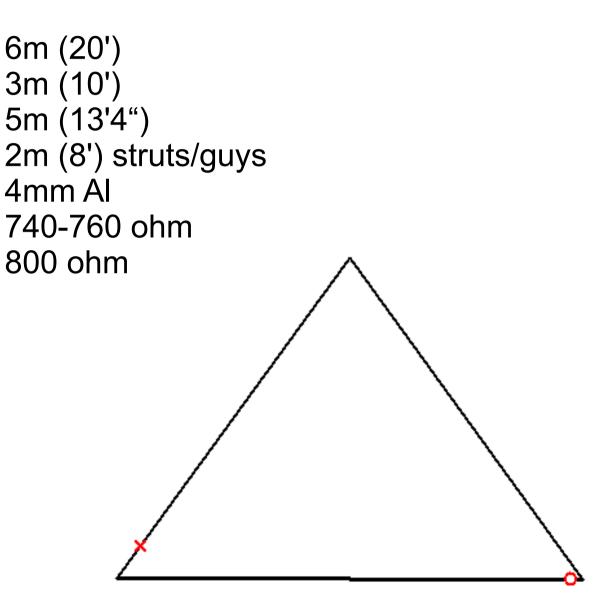
Triangle Height Bottom Wire Height Bottom Wire Length Construction Width Wire Load Feed 7.5m (25') 3m (10') 15m (50') 3m (10') struts/guys 4mm Al 830-850 ohm 800 ohm

Bigger Triangle

Comparison

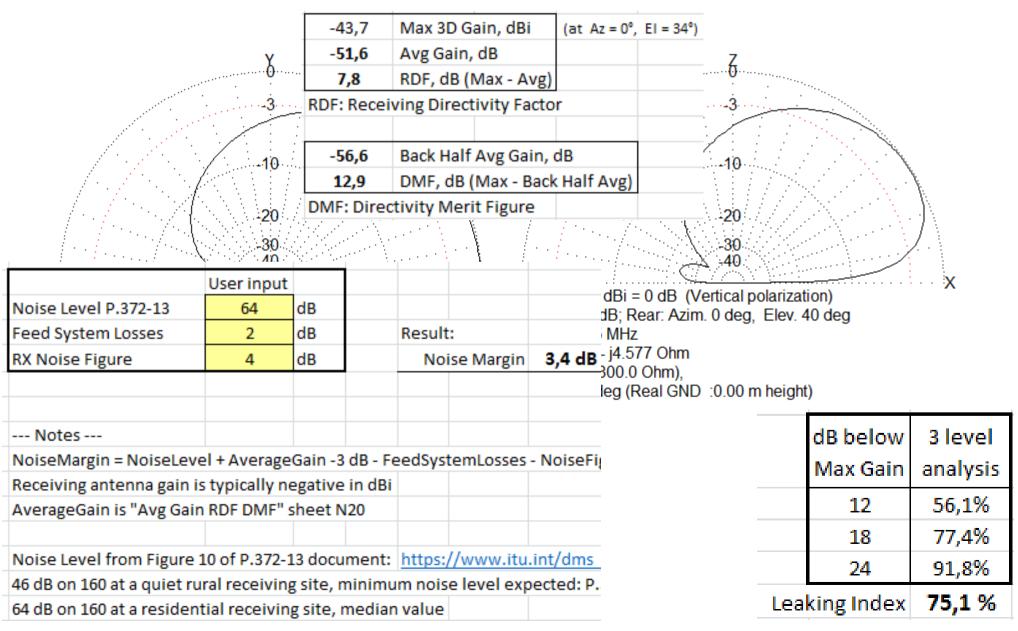
						Back		QTH	Noise	Leaking			
	Gmax	At	At	Gaver	RDF	Gaver	DMF	Noise Lvl	Margin	Index	Length	Width	Height
Antenna pattern file name	dBi	Azim	Elev	dB	dB	dB	dB	dB	dB	%	m	m	m
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	46	-5,4	76,7	8,0	3,0	8,5
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	64	12,6	76,7	8,0	3,0	8,5
02 Bigger Triangle v02.csv	-27,1	0°	35°	-34,9	7,7	-39,8	12,6	46	2,1	75,1	15,0	3,0	10,5

Noise Margin increased to 2.1 dB from -5,4 dB


2,1 dB is not a good enough Noise Margin for the absolute most quiet QTH

Smaller Triangle

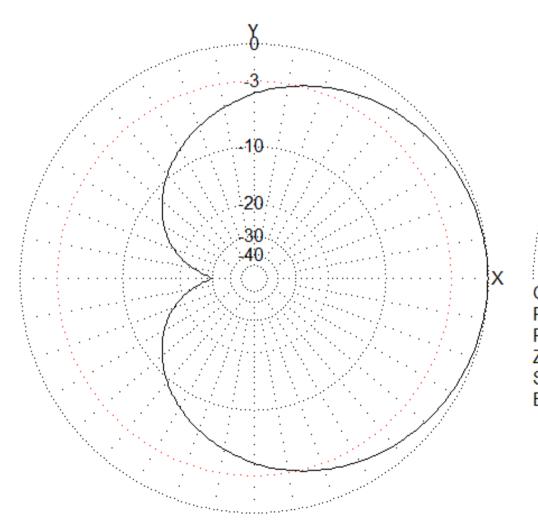
RESIDENTIAL

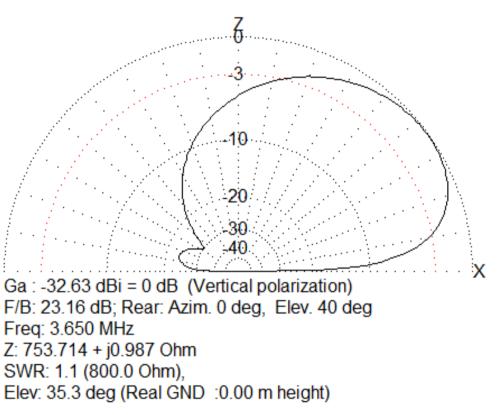

Construction Height Bottom Wire Height Bottom Wire Length Construction Width Wire Load Feed

Smaller Triangle

RESIDENTIAL

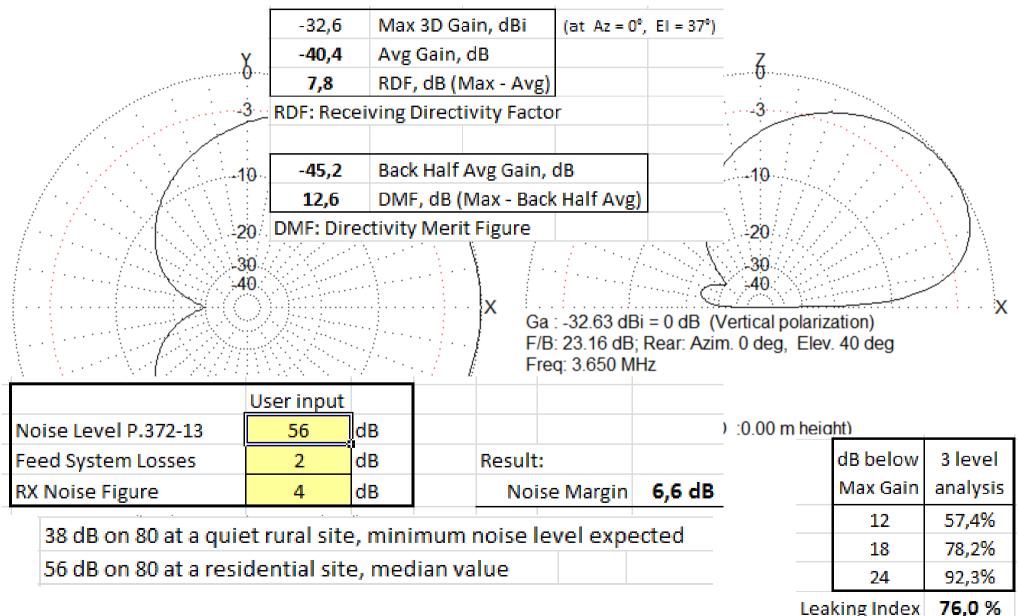
Comparison


						Back		QTH	Noise	Leaking			
	Gmax	At	At	Gaver	RDF	Gaver	DMF	Noise Lvl	Margin	Index	Length	Width	Height
Antenna pattern file name	dBi	Azim	Elev	dB	dB	dB	dB	dB	dB	%	m	m	m
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	46	-5,4	76,7	8,0	3,0	8,5
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	64	12,6	76,7	8,0	3,0	8,5
02 Bigger Triangle v02.csv	-27,1	0°	35°	-34,9	7,7	-39,8	12,6	46	2,1	75,1	15,0	3,0	10,5
03 Smaller Triangle v03.csv	-43,7	0°	34°	-51,6	7,8	-56,6	12,9	64	3,4	75,1	5,0	2,0	6,0


Noise Margin shows 3,4 dB at a Residential QTH

For a 5 meters long antenna, the result is surprising

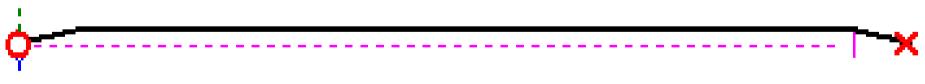
Smaller Triangle 80m



Smaller Triangle 80m

RESIDENTIAL

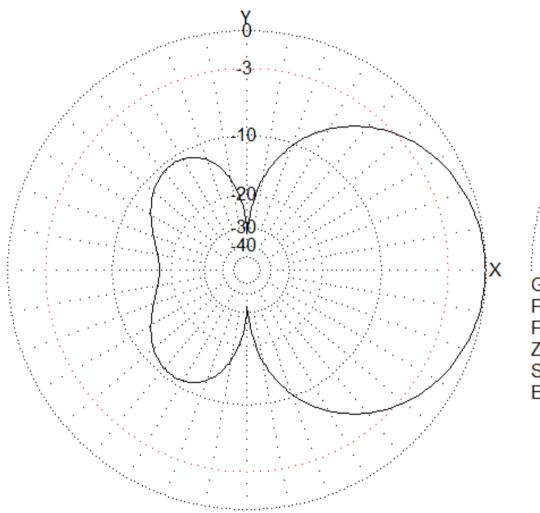
Comparison

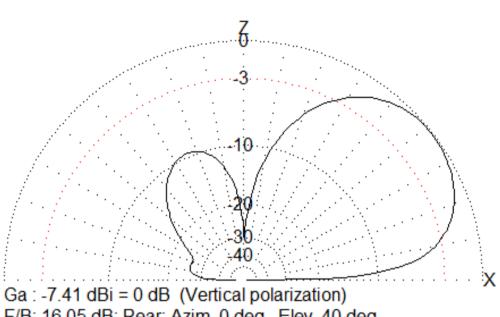

						Back		QTH	Noise	Leaking			
	Gmax	At	At	Gaver	RDF	Gaver	DMF	Noise Lvl	Margin	Index	Length	Width	Height
Antenna pattern file name	dBi	Azim	Elev	dB	dB	dB	dB	dB	dB	%	m	m	m
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	46	-5,4	76,7	8,0	3,0	8,5
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	64	12,6	76,7	8,0	3,0	8,5
02 Bigger Triangle v02.csv	-27,1	0°	35°	-34,9	7,7	-39,8	12,6	46	2,1	75,1	15,0	3,0	10,5
03 Smaller Triangle v03.csv	-43,7	0°	34°	-51,6	7,8	-56,6	12,9	64	3,4	75,1	5,0	2,0	6,0
04 Smaller Triangle v03 80m.csv	-32,6	0°	37°	-40,4	7,8	-45,2	12,6	56	6,6	76,0	5,0	2,0	6,0

5 m long, 6m high Triangle antenna just about functions in a residential area QTH

Beverage 170m

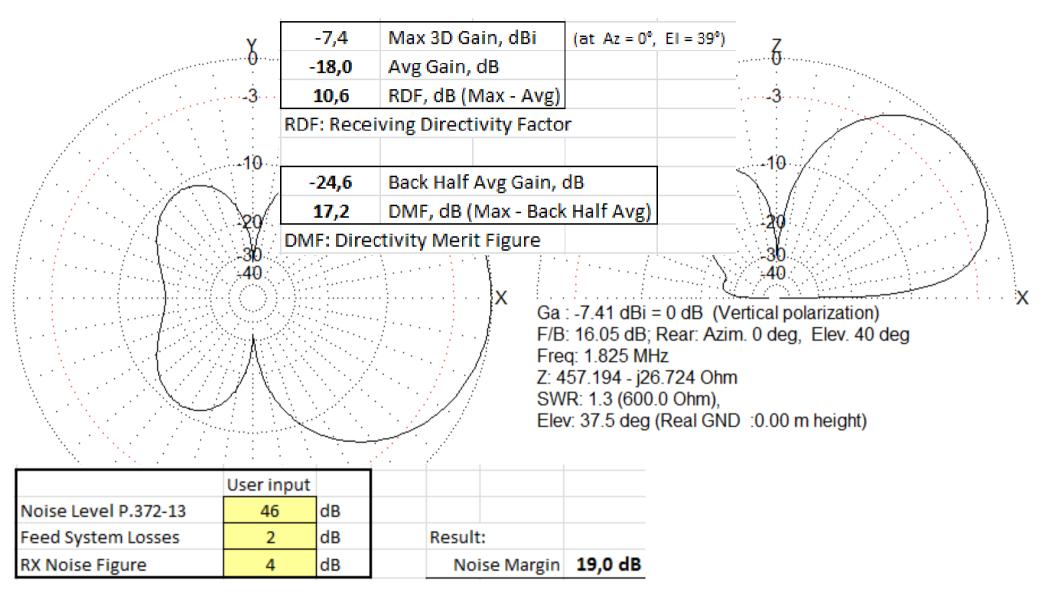
Total construction length 170m (558') Wire height 3m (10') Construction width 2m (6'7") with struts Loads 820-850 ohm Feed 800 ohm (0 and 180 deg)



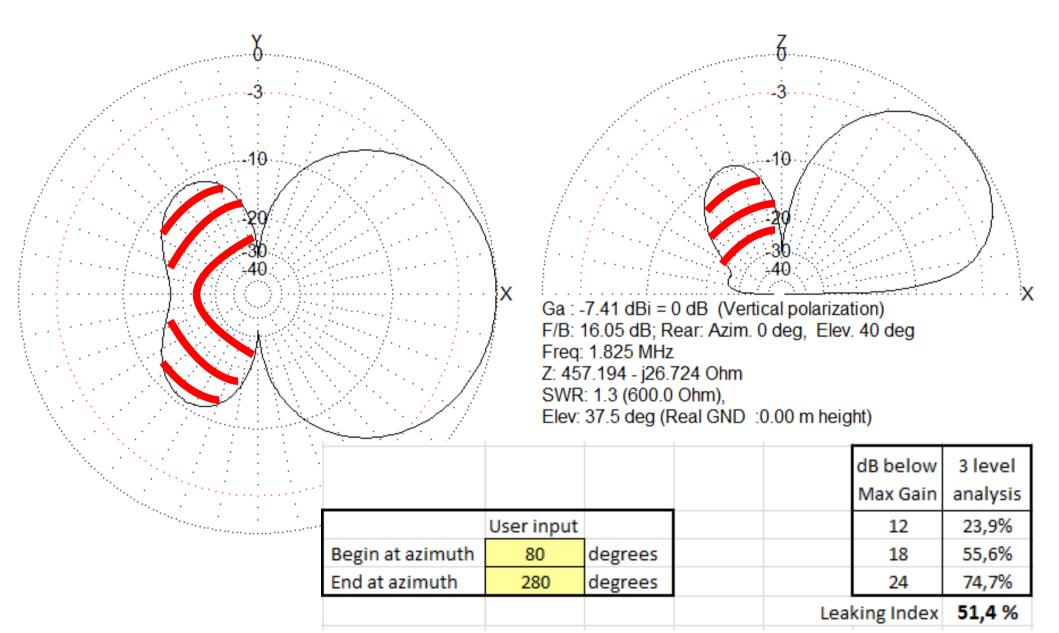

Feed 600 ohm

Load 450 ohm

Beverage 170m

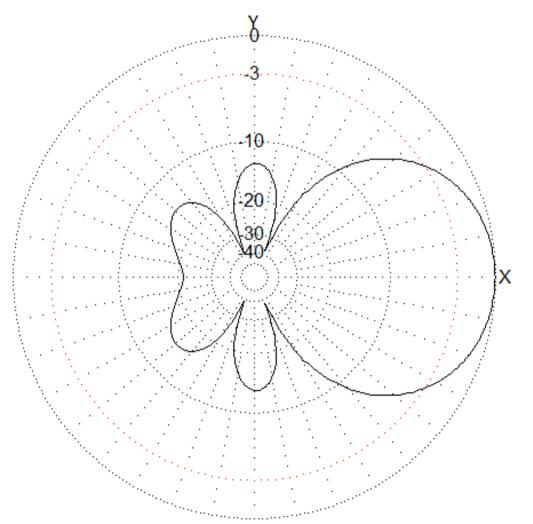


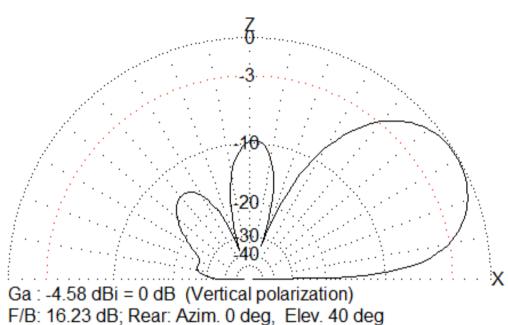
F/B: 16.05 dB; Rear: Azim. 0 deg, Elev. 40 deg Freq: 1.825 MHz Z: 457.194 - j26.724 Ohm SWR: 1.3 (600.0 Ohm), Elev: 37.5 deg (Real GND :0.00 m height)



Beverage 170m

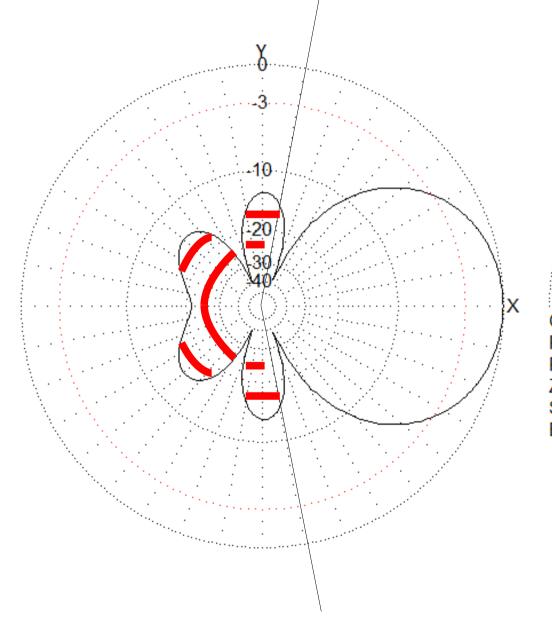
Beverage 170m Leaking Index

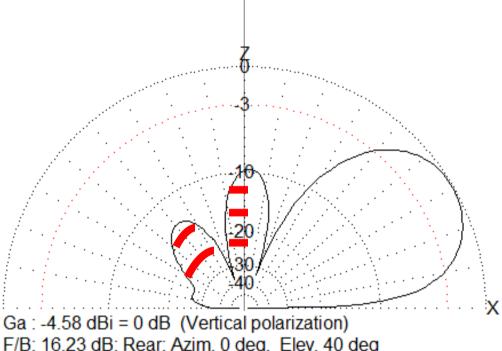



Comparison

						Back		QTH	Noise	Leaking			
	Gmax	At	At	Gaver	RDF	Gaver	DMF	Noise Lvl	Margin	Index	Length	Width	Height
Antenna pattern file name	dBi	Azim	Elev	dB	dB	dB	dB	dB	dB	%	m	m	m
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	46	-5,4	76,7	8,0	3,0	8,5
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	64	12,6	76,7	8,0	3,0	8,5
02 Bigger Triangle v02.csv	-27,1	0°	35°	-34,9	7,7	-39,8	12,6	46	2,1	75,1	15,0	3,0	10,5
03 Smaller Triangle v03.csv	-43,7	0°	34°	-51,6	7,8	-56,6	12,9	64	3,4	75,1	5,0	2,0	6,0
04 Smaller Triangle v03 80m.csv	-32,6	0°	37°	-40,4	7,8	-45,2	12,6	56	6,6	76,0	5,0	2,0	6,0
05 Beverage 170m.csv	-7,4	0°	39°	-18,0	10,6	-24,6	17,2	46	19,0	51,4	170,0	2,0	3,0

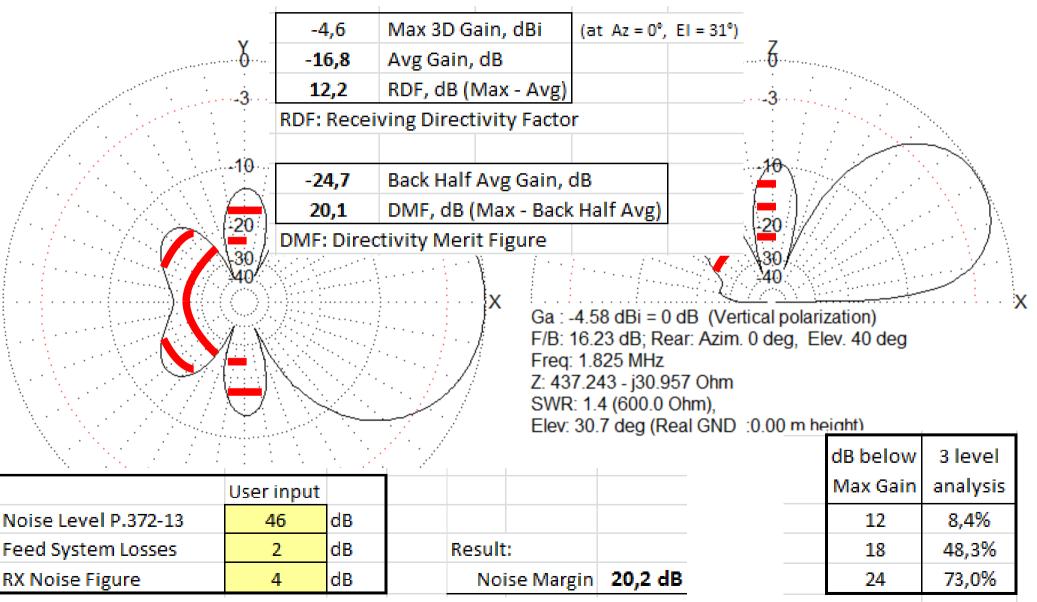
Beverage 250m





F/B: 16.23 dB; Rear: Azim. 0 deg, Elev. 40 de Freq: 1.825 MHz Z: 437.243 - j30.957 Ohm SWR: 1.4 (600.0 Ohm), Elev: 30.7 deg (Real GND :0.00 m height)

Beverage 250m Leaking Index

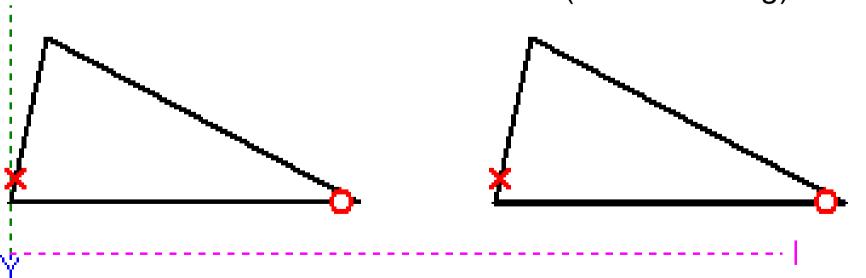


F/B: 16.23 dB; Rear: Azim. 0 deg, Elev. 40 deg Freq: 1.825 MHz Z: 437.243 - j30.957 Ohm SWR: 1.4 (600.0 Ohm), Elev: 30.7 deg (Real GND :0.00 m height)

Beverage 250m

Leaking Index 43,2 %

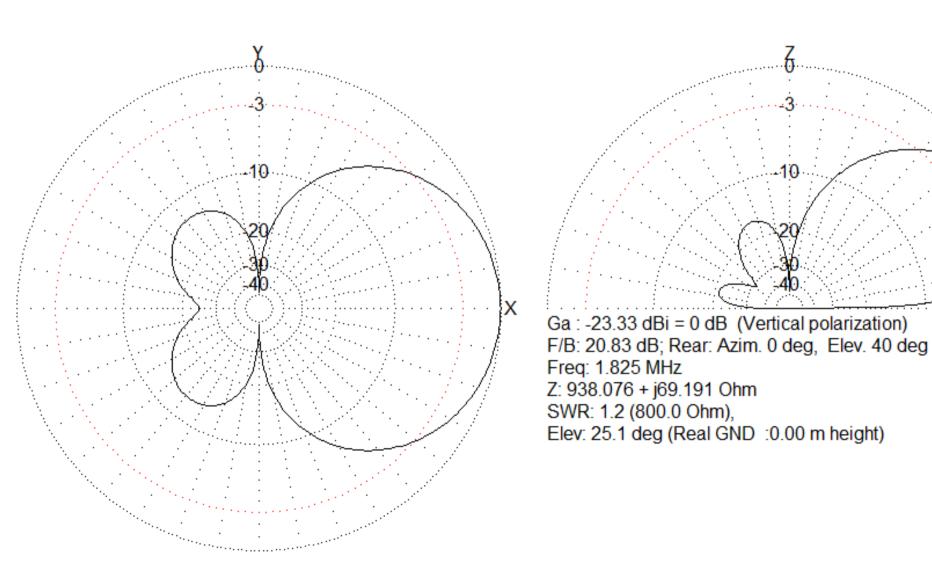
Comparison

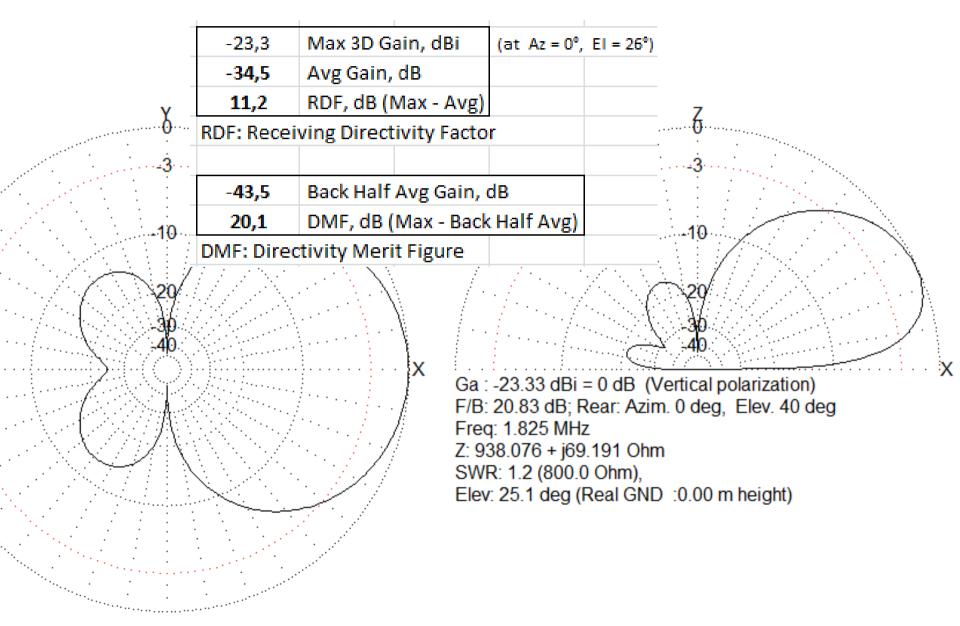

						Back		QTH	Noise	Leaking			
	Gmax	At	At	Gaver	RDF	Gaver	DMF	Noise Lvl	Margin	Index	Length	Width	Height
Antenna pattern file name	dBi	Azim	Elev	dB	dB	dB	dB	dB	dB	%	m	m	m
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	46	-5,4	76,7	8,0	3,0	8,5
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	64	12,6	76,7	8,0	3,0	8,5
02 Bigger Triangle v02.csv	-27,1	0°	35°	-34,9	7,7	-39,8	12,6	46	2,1	75,1	15,0	3,0	10,5
03 Smaller Triangle v03.csv	-43,7	0°	34°	-51,6	7,8	-56,6	12,9	64	3,4	75,1	5,0	2,0	6,0
04 Smaller Triangle v03 80m.csv	-32,6	0°	37°	-40,4	7,8	-45,2	12,6	56	6,6	76,0	5,0	2,0	6,0
05 Beverage 170m.csv	-7,4	0°	39°	-18,0	10,6	-24,6	17,2	46	19,0	51,4	170,0	2,0	3,0
06 Beverage 250m.csv	-4,6	0°	31°	-16,8	12,2	-24,7	20,1	46	20,2	43,2	250,0	2,0	3,0

Beverages show their power compared to the smallest antennas

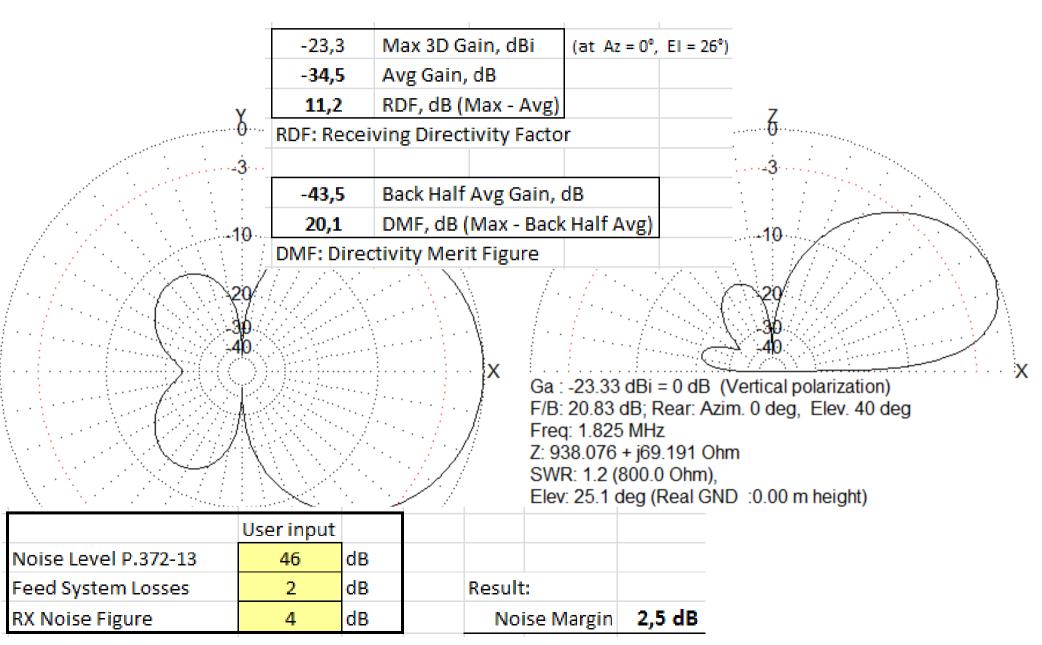
ZERO RADIO CLUB RADIATORS AHOK OHOK OH4A OHOV

Twin Triangle

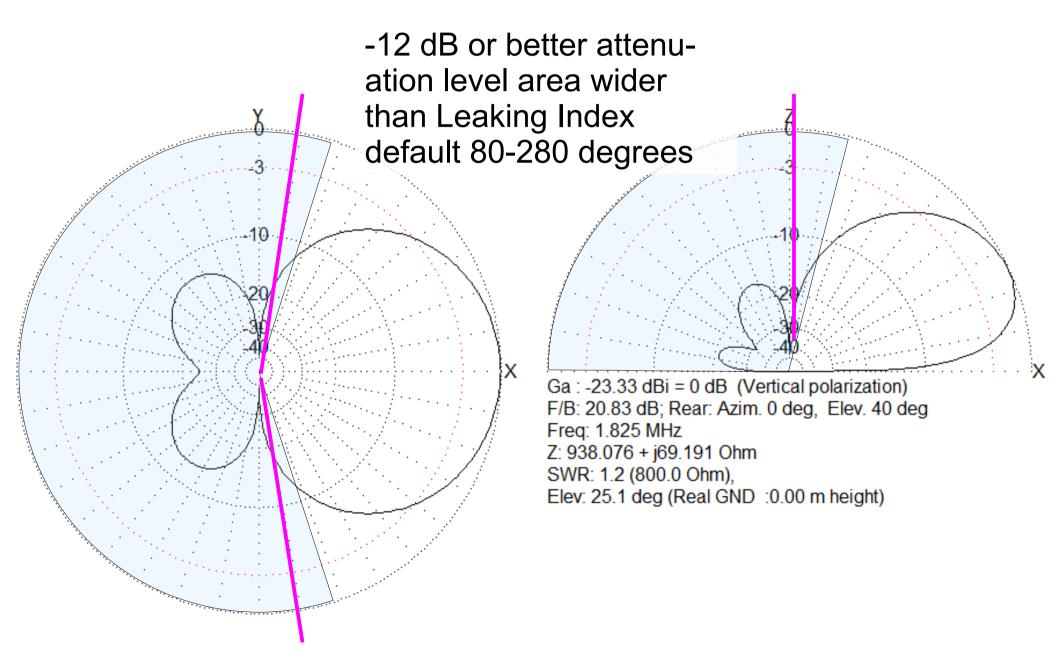

Total construction length 58m (190') Bottom wires at 3m (10') Bottom wire lengths 24m (78'9") Triangle height 9,5m (31'2") Construction Width 3m (10') Wire 4mm Al Loads 840-860 ohm Feed 800 ohm (0 and 180 deg)


X

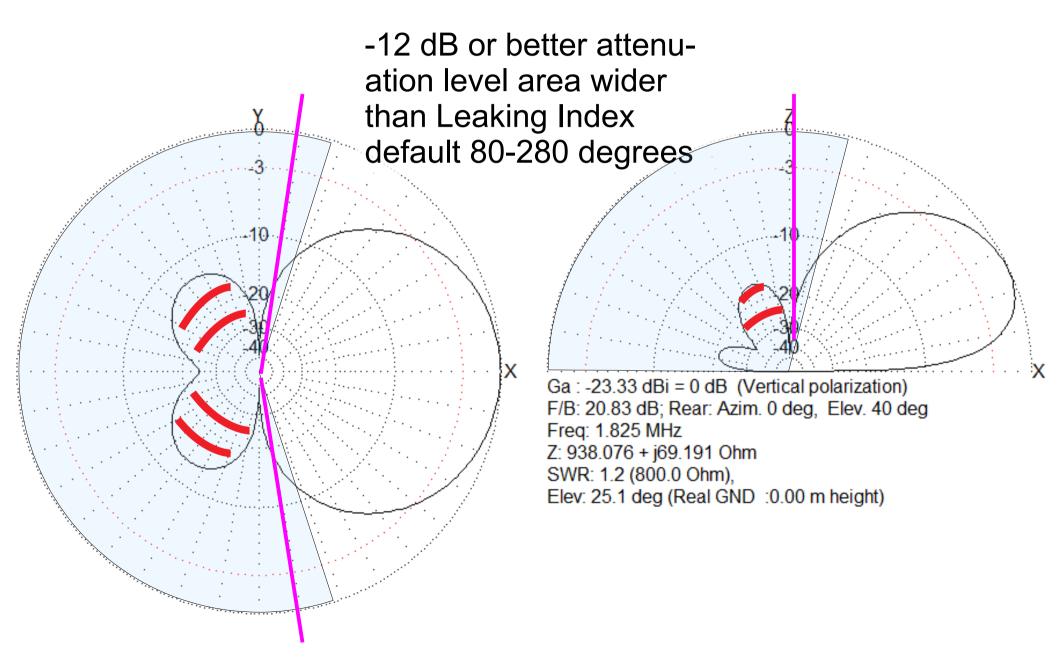
Twin Triangle



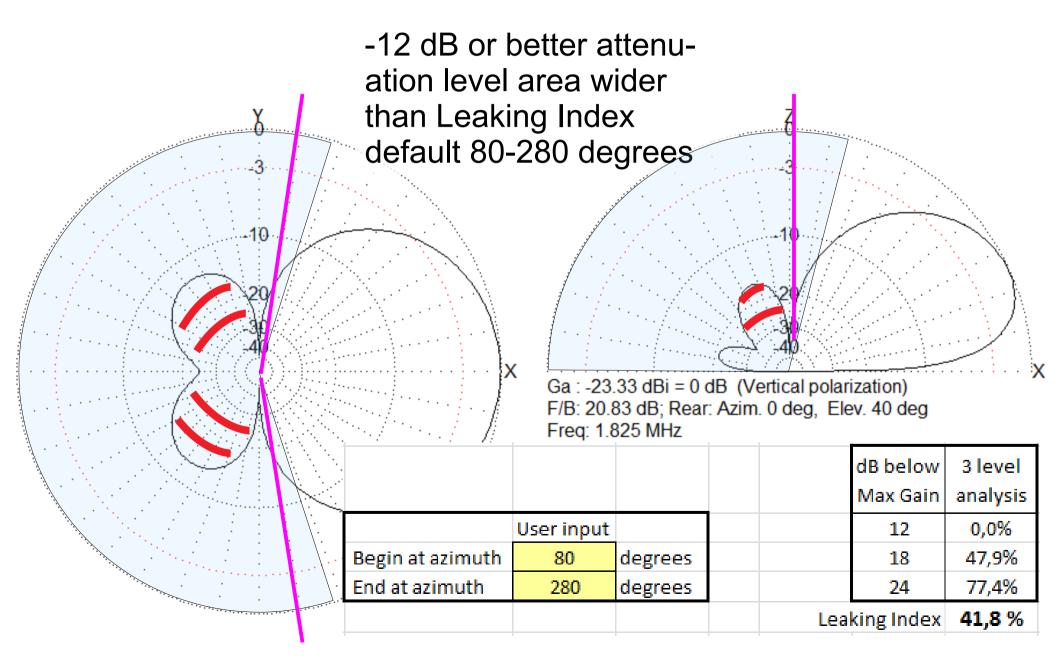
Twin Triangle RDF DMF



Twin Triangle Noise Margin



Twin Triangle Leaking Index



Twin Triangle Leaking Index

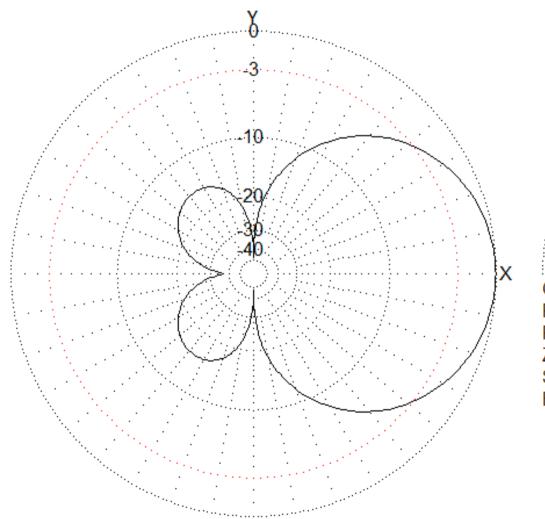
Twin Triangle Leaking Index

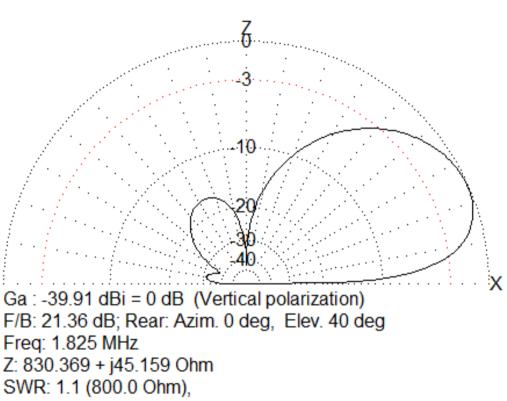
						Back		QTH	Noise	Leaking			
	Gmax	At	At	Gaver	RDF	Gaver	DMF	Noise Lvl	Margin	Index	Length	Width	Height
Antenna pattern file name	dBi	Azim	Elev	dB	dB	dB	dB	dB	dB	%	m	m	m
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	46	-5,4	76,7	8,0	3,0	8,5
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	64	12,6	76,7	8,0	3,0	8,5
02 Bigger Triangle v02.csv	-27,1	0°	35°	-34,9	7,7	-39,8	12,6	46	2,1	75,1	15,0	3,0	10,5
03 Smaller Triangle v03.csv	-43,7	0°	34°	-51,6	7,8	-56,6	12,9	64	3,4	75,1	5,0	2,0	6,0
04 Smaller Triangle v03 80m.csv	-32,6	0°	37°	-40,4	7,8	-45,2	12,6	56	6,6	76,0	5,0	2,0	6,0
05 Beverage 170m.csv	-7,4	0°	39°	-18,0	10,6	-24,6	17,2	46	19,0	51,4	170,0	2,0	3,0
06 Beverage 250m.csv	-4,6	0°	31°	-16,8	12,2	-24,7	20,1	46	20,2	43,2	250,0	2,0	3,0
07 Twin Triangle v02.csv	-23,3	0°	26°	-34,5	11,2	-43,5	20,1	46	2,5	41,8	58,0	3,0	12,5

Notice !!

- RDF gets worse
- DMF stays exactly the same
- Leaking Index improves

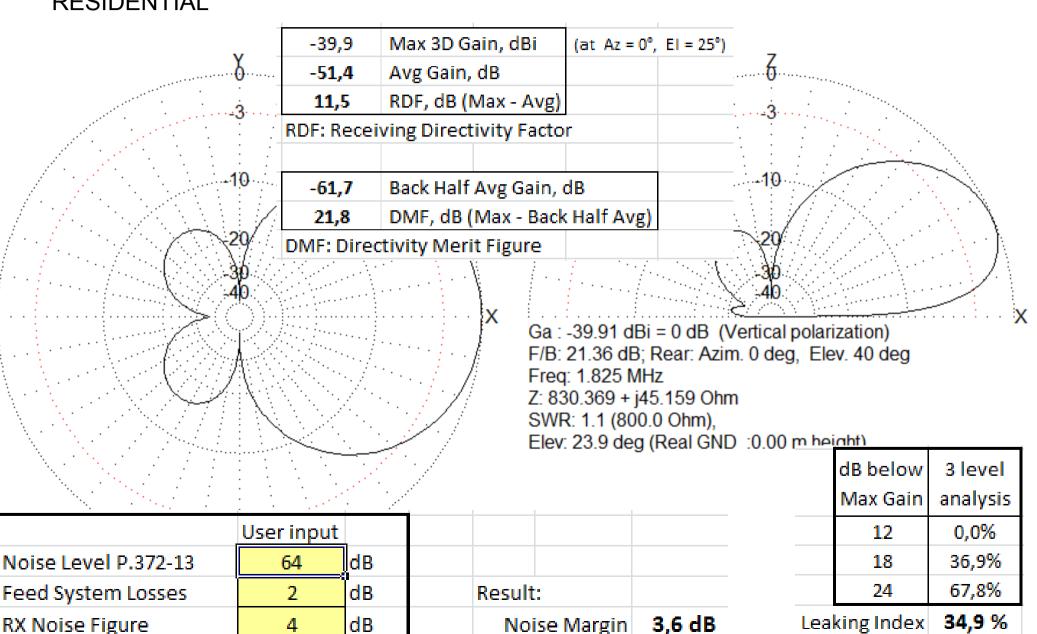
 However, Noise Margin is too small for the most quiet QTH


Smaller Twin Triangle



Total construction length 25m (82') Bottom wires at 3m (10') Bottom wire lengths 8m (26'3") Triangle height 6.5m (21'4") Construction width 3m (10') Loads 780-800 ohm Feeds 800 ohm (0 and 180 deg)

Smaller Twin Triangle

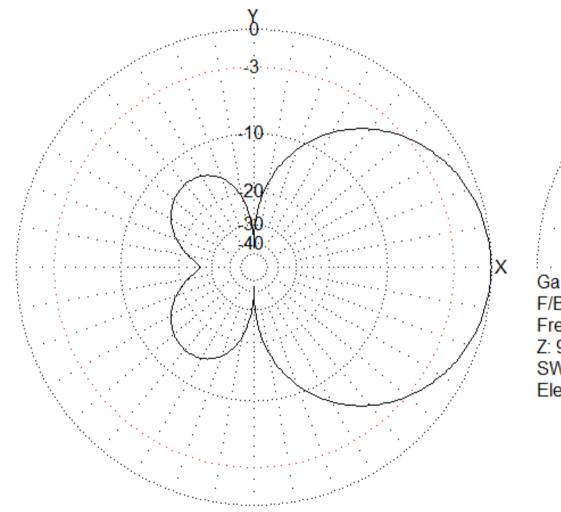


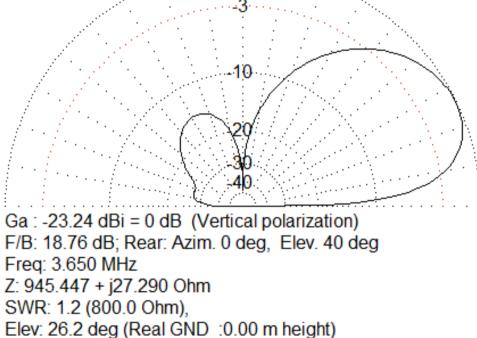
Elev: 23.9 deg (Real GND :0.00 m height)

Smaller Twin Triangle

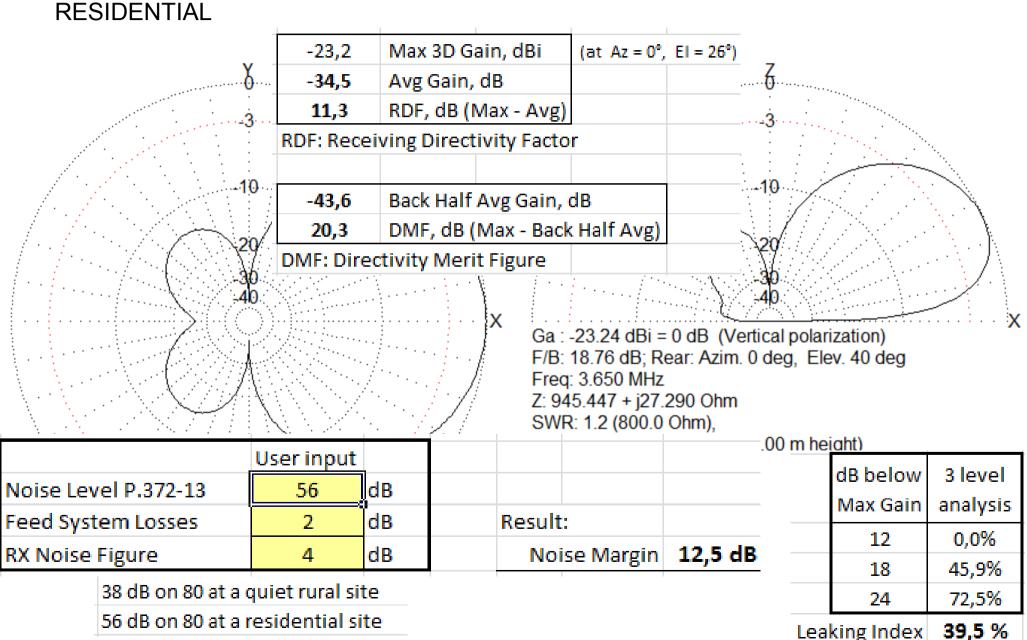
						Back		QTH	Noise	Leaking			
	Gmax	At	At	Gaver	RDF	Gaver	DMF	Noise Lvl	Margin	Index	Length	Width	Height
Antenna pattern file name	dBi	Azim	Elev	dB	dB	dB	dB	dB	dB	%	m	m	m
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	46	-5,4	76,7	8,0	3,0	8,5
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	64	12,6	76,7	8,0	3,0	8,5
02 Bigger Triangle v02.csv	-27,1	0°	35°	-34,9	7,7	-39,8	12,6	46	2,1	75,1	15,0	3,0	10,5
03 Smaller Triangle v03.csv	-43,7	0°	34°	-51,6	7,8	-56,6	12,9	64	3,4	75,1	5,0	2,0	6,0
04 Smaller Triangle v03 80m.csv	-32,6	0°	37°	-40,4	7,8	-45,2	12,6	56	6,6	76,0	5,0	2,0	6,0
05 Beverage 170m.csv	-7,4	0°	39°	-18,0	10,6	-24,6	17,2	46	19,0	51,4	170,0	2,0	3,0
06 Beverage 250m.csv	-4,6	0°	31°	-16,8	12,2	-24,7	20,1	46	20,2	43,2	250,0	2,0	3,0
07 Twin Triangle v02.csv	-23,3	0°	26°	-34,5	11,2	-43,5	20,1	46	2,5	41,8	58,0	3,0	12,5
08 Smaller Twin Triangle v03.csv	-39,9	0°	25°	-51,4	11,5	-61,7	21,8	64	3,6	34,9	25,0	3,0	9,5

Notice !!


- RDF worse than 250m beverage
- OMF 1.7 dB better than 250m beverage
- Leaking Index improves clearly


 Noise Margin too small to ensure hearing the weakest possible signals even at Residential QTH

X


Smaller Twin Triangle 80m

Smaller Twin Triangle 80m

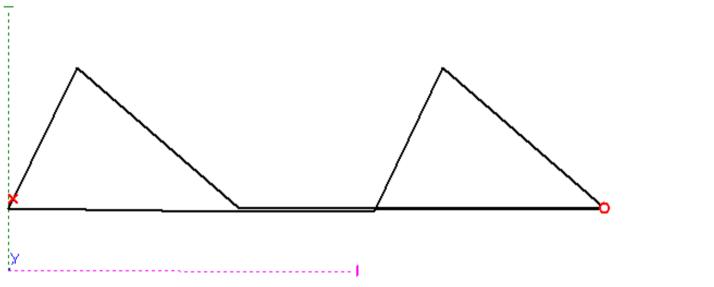
Smaller Twin Triangle 80m

	User input		Decide	ntial OT				
Noise Level P.372-13	56	dB	Residential QTH					
Feed System Losses	2	dB	Result:					
RX Noise Figure	4	dB	Noise Margin	12,5 dB	above electronics noise			

	User input		Ouiot r	ural QT⊦	
Noise Level P.372-13	38	dB	Quiet i	ulaiQII	
Feed System Losses	2	dB	Result:		
RX Noise Figure	4	dB	Noise Margin	-5,5 dB	above electronics noise

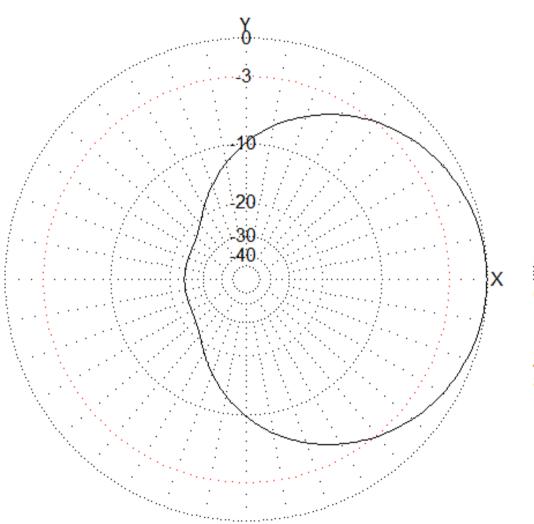
Total construction length 25m (82ft)

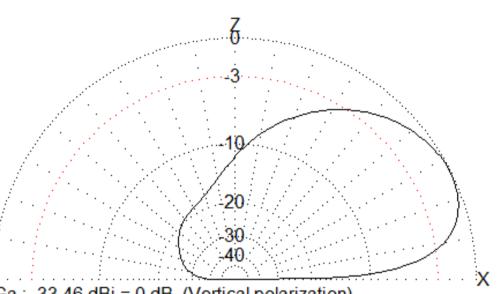
						Back		QTH	Noise	Leaking			
	Gmax	At	At	Gaver	RDF	Gaver	DMF	Noise Lvl	Margin	Index	Length	Width	Height
Antenna pattern file name	dBi	Azim	Elev	dB	dB	dB	dB	dB	dB	%	m	m	m
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	46	-5,4	76,7	8,0	3,0	8,5
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	64	12,6	76,7	8,0	3,0	8,5
02 Bigger Triangle v02.csv	-27,1	0°	35°	-34,9	7,7	-39,8	12,6	46	2,1	75,1	15,0	3,0	10,5
03 Smaller Triangle v03.csv	-43,7	0°	34°	-51,6	7,8	-56,6	12,9	64	3,4	75,1	5,0	2,0	6,0
04 Smaller Triangle v03 80m.csv	-32,6	0°	37°	-40,4	7,8	-45,2	12,6	56	6,6	76,0	5,0	2,0	6,0
05 Beverage 170m.csv	-7,4	0°	39°	-18,0	10,6	-24,6	17,2	46	19,0	51,4	170,0	2,0	3,0
06 Beverage 250m.csv	-4,6	0°	31°	-16,8	12,2	-24,7	20,1	46	20,2	43,2	250,0	2,0	3,0
07 Twin Triangle v02.csv	-23,3	0°	26°	-34,5	11,2	-43,5	20,1	46	2,5	41,8	58,0	3,0	12,5
08 Smaller Twin Triangle v03.csv	-39,9	0°	25°	-51,4	11,5	-61,7	21,8	64	3,6	34,9	25,0	3,0	9,5
08 Smaller Twin Triangle v03 80m.	-23,2	0°	26°	-34,5	11,3	-43,6	20,3	56	12,5	39,5	25,0	3,0	9,5


Smaller Twin Triangle gives solid performance on 80, marginal on 160 at a Residential area QTH

DMF and Leaking Index win over a 250m long beverage

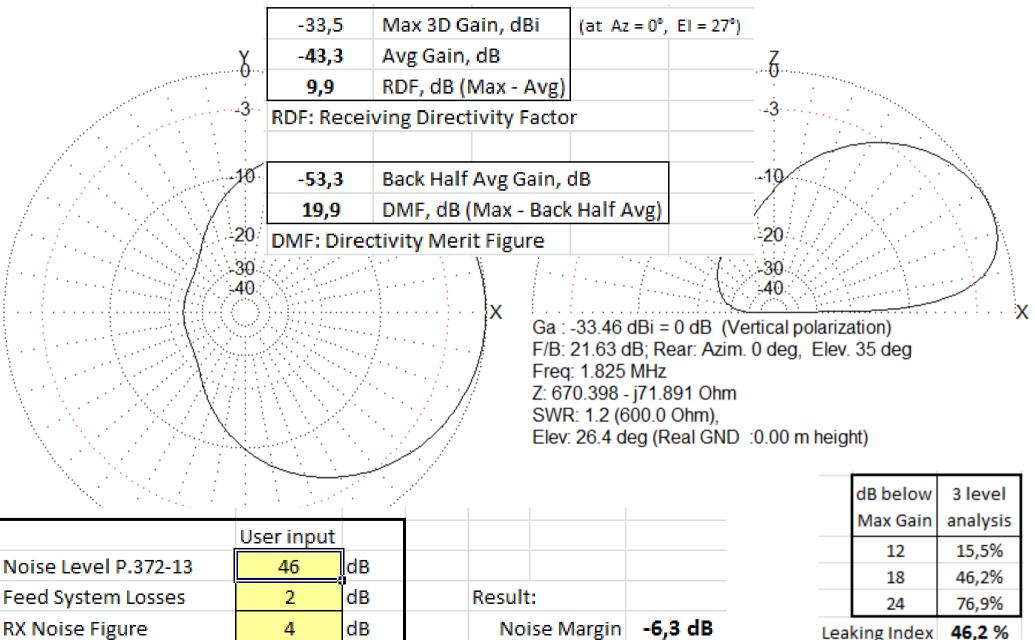
LIXA proto


Linear Inline targetX Antenna



Total construction length 22.8m (74'9") Bottom wires at 2.4m (7' 10") Material 4mm Aluminum Triangle height 5.4m (17'8") Construction width 3m (10') Load 800 ohm Feed 800 ohm

LIXA proto Linear Inline targetX Antenna



Ga : -33.46 dBi = 0 dB (Vertical polarization) F/B: 21.63 dB; Rear: Azim. 0 deg, Elev. 35 deg Freq: 1.825 MHz Z: 670.398 - j71.891 Ohm SWR: 1.2 (600.0 Ohm), Elev: 26.4 deg (Real GND :0.00 m height)

LIXA proto

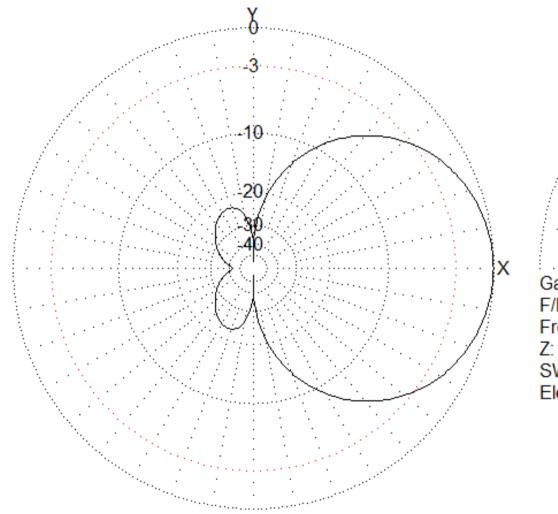
						Back		QTH	Noise	Leaking			
	Gmax	At	At	Gaver	RDF	Gaver	DMF	Noise Lvl	Margin	Index	Length	Width	Height
Antenna pattern file name	dBi	Azim	Elev	dB	dB	dB	dB	dB	dB	%	m	m	m
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	46	-5,4	76,7	8,0	3,0	8,5
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	64	12,6	76,7	8,0	3,0	8,5
02 Bigger Triangle v02.csv	-27,1	0°	35°	-34,9	7,7	-39,8	12,6	46	2,1	75,1	15,0	3,0	10,5
03 Smaller Triangle v03.csv	-43,7	0°	34°	-51,6	7,8	-56,6	12,9	64	3,4	75,1	5,0	2,0	6,0
04 Smaller Triangle v03 80m.csv	-32,6	0°	37°	-40,4	7,8	-45,2	12,6	56	6,6	76,0	5,0	2,0	6,0
05 Beverage 170m.csv	-7,4	0°	39°	-18,0	10,6	-24,6	17,2	46	19,0	51,4	170,0	2,0	3,0
06 Beverage 250m.csv	-4,6	0°	31°	-16,8	12,2	-24,7	20,1	46	20,2	43,2	250,0	2,0	3,0
07 Twin Triangle v02.csv	-23,3	0°	26°	-34,5	11,2	-43,5	20,1	46	2,5	41,8	58,0	3,0	12,5
08 Smaller Twin Triangle v03.csv	-39,9	0°	25°	-51,4	11,5	-61,7	21,8	64	3,6	34,9	25,0	3,0	9,5
08 Smaller Twin Triangle v03 80m.	-23,2	0°	26°	-34,5	11,3	-43,6	20,3	56	12,5	39,5	25,0	3,0	9,5
10 LIXA proto 201611.csv	-33,5	0°	27°	-43,3	9,9	-53,3	19,9	46	-6,3	46,2	22,8	3,0	7,8
10 LIXA proto 201611 80m.csv	-17,0	0°	31°	-26,3	9,4	-35,8	18,9	38	2,7	43,6	22,8	3,0	7,8

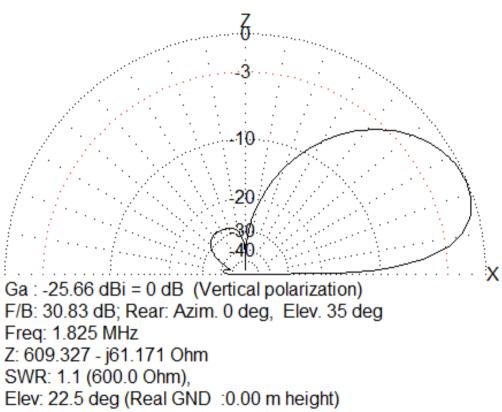
LIXA has a little better pattern than DHDL or Double Delta This prototype is dual band 160/80, under testing at OH4A Noise performance is marginal on 80, should be better on 160 OH4A QTH is not the most quiet

Also a dual rectangle version, feed and loads at low corners, is under testing

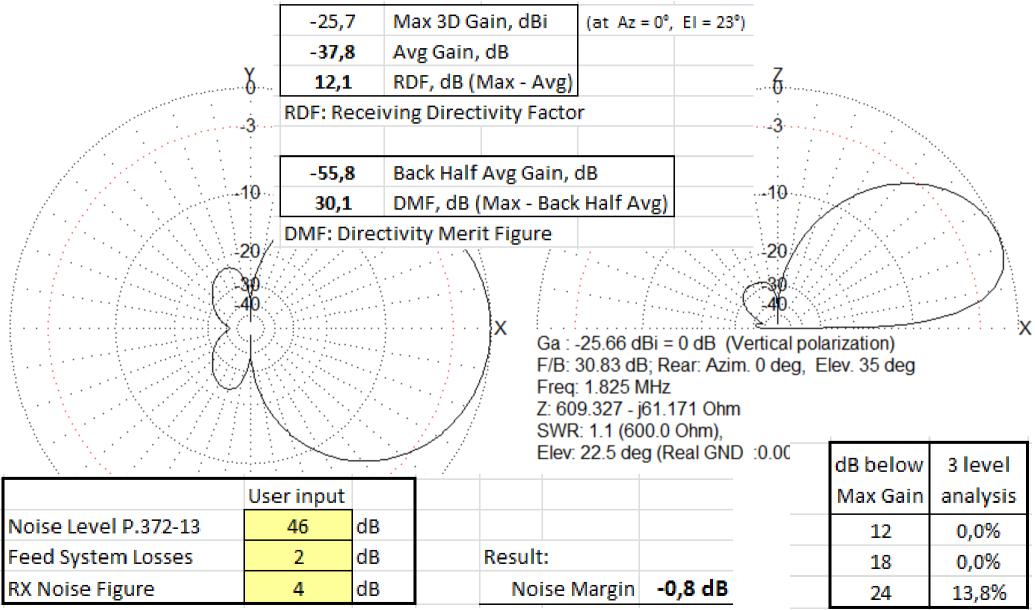
2x LIRA

Linear Inline Receiving Antenna


Named after idea generator OH2RA

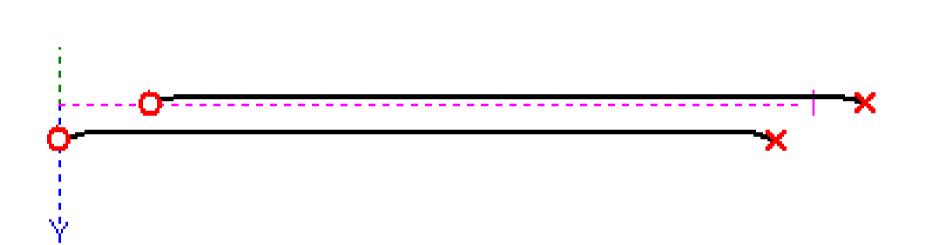


Total construction length 83m (272'4") Bottom wires at 2.4m (7' 10") Material 4mm Aluminum Triangle height 8.1m (26'7") Construction width 3m (10') Loads 920 ohm Feeds 600 ohm (180 deg phase)


2x LIRA Linear Inline Receiving Antenna

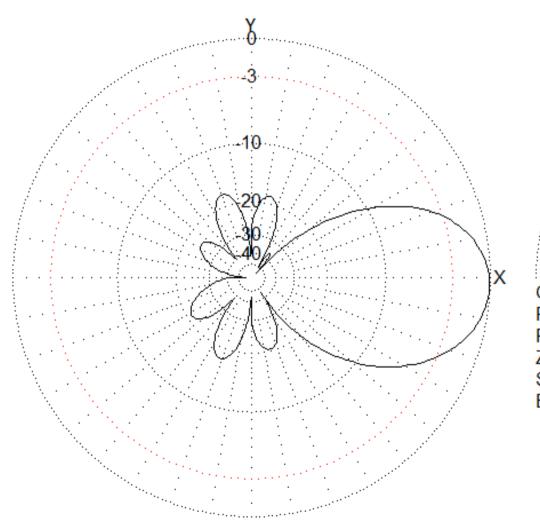
2x LIRA

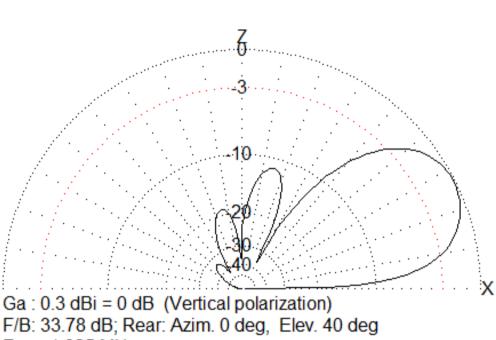
Leaking Index 4,6 %


						Back		QTH	Noise	Leaking			
	Gmax	At	At	Gaver	RDF	Gaver	DMF	Noise Lvl	Margin	Index	Length	Width	Height
Antenna pattern file name	dBi	Azim	Elev	dB	dB	dB	dB	dB	dB	%	m	m	m
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	46	-5,4	76,7	8,0	3,0	8,5
01 Triangle v01.csv	-34,6	0°	35°	-42,4	7,8	-47,4	12,8	64	12,6	76,7	8,0	3,0	8,5
02 Bigger Triangle v02.csv	-27,1	0°	35°	-34,9	7,7	-39,8	12,6	46	2,1	75,1	15,0	3,0	10,5
03 Smaller Triangle v03.csv	-43,7	0°	34°	-51,6	7,8	-56,6	12,9	64	3,4	75,1	5,0	2,0	6,0
04 Smaller Triangle v03 80m.csv	-32,6	0°	37°	-40,4	7,8	-45,2	12,6	56	6,6	76,0	5,0	2,0	6,0
05 Beverage 170m.csv	-7,4	0°	39°	-18,0	10,6	-24,6	17,2	46	19,0	51,4	170,0	2,0	3,0
06 Beverage 250m.csv	-4,6	0°	31°	-16,8	12,2	-24,7	20,1	46	20,2	43,2	250,0	2,0	3,0
07 Twin Triangle v02.csv	-23,3	0°	26°	-34,5	11,2	-43,5	20,1	46	2,5	41,8	58,0	3,0	12,5
08 Smaller Twin Triangle v03.csv	-39,9	0°	25°	-51,4	11,5	-61,7	21,8	64	3,6	34,9	25,0	3,0	9,5
08 Smaller Twin Triangle v03 80m.	-23,2	0°	26°	-34,5	11,3	-43,6	20,3	56	12,5	39,5	25,0	3,0	9,5
10 LIXA proto 201611.csv	-33,5	0°	27°	-43,3	9,9	-53,3	19,9	46	-6,3	46,2	22,8	3,0	7,8
10 LIXA proto 201611 80m.csv	-17,0	0°	31°	-26,3	9,4	-35,8	18,9	38	2,7	43,6	22,8	3,0	7,8
11 2x LIRA v4.csv	-25,7	0°	23°	-37,8	12,1	-55,8	30,1	46	-0,8	4,6	83,0	3,0	10,5

New performance level RDF still worse than 250m beverage DMF and Leaking Index show exceptional performance Antenna total land area 83 x 3 m

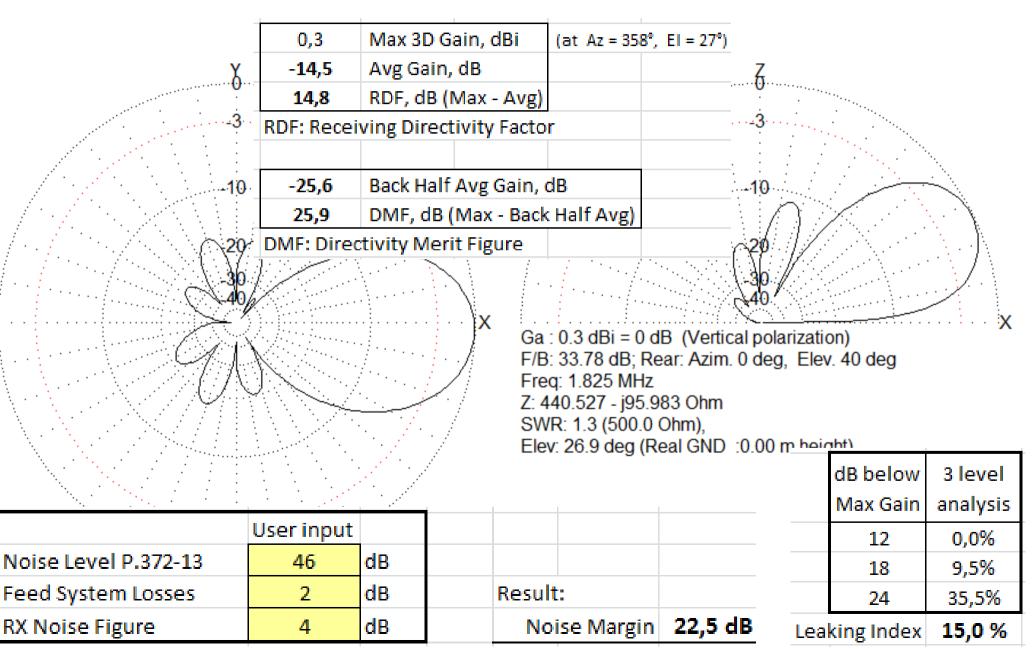
Noise Margin too small for the most Quiet Rural QTH


Staggered 320m Beverages



Construction length 360m (1181 ft) Height 3m (10') Width 100m (328') Feed 500 ohm, 90 deg phasing Loads 450 ohm

Staggered 320m Beverages



Freq: 1.825 MHz Z: 440.527 - j95.983 Ohm SWR: 1.3 (500.0 Ohm), Elev: 26.9 deg (Real GND :0.00 m height)

Staggered 320m Beverages

						Back		QTH	Noise	Leaking			
	Gmax	At	At	Gaver	RDF	Gaver	DMF	Noise Lvl	Margin	Index	Length	Width	Height
Antenna pattern file name	dBi	Azim	Elev	dB	dB	dB	dB	dB	dB	%	m	m	m
05 Beverage 170m.csv	-7,4	0°	39°	-18,0	10,6	-24,6	17,2	46	19,0	51,4	170,0	2,0	3,0
06 Beverage 250m.csv	-4,6	0°	31°	-16,8	12,2	-24,7	20,1	46	20,2	43,2	250,0	2,0	3,0
07 Twin Triangle v02.csv	-23,3	0°	26°	-34,5	11,2	-43,5	20,1	46	2,5	41,8	58,0	3,0	12,5
08 Smaller Twin Triangle v03.csv	-39,9	0°	25°	-51,4	11,5	-61,7	21,8	64	3,6	34,9	25,0	3,0	9,5
08 Smaller Twin Triangle v03 80m.	-23,2	0°	26°	-34,5	11,3	-43,6	20,3	56	12,5	39,5	25,0	3,0	9,5
10 LIXA proto 201611.csv	-33,5	0°	27°	-43,3	9,9	-53,3	19,9	46	-6,3	46,2	22,8	3,0	7,8
10 LIXA proto 201611 80m.csv	-17,0	0°	31°	-26,3	9,4	-35,8	18,9	38	2,7	43,6	22,8	3,0	7,8
11 2x LIRA v4.csv	-25,7	0°	23°	-37,8	12,1	-55,8	30,1	46	-0,8	4,6	83,0	3,0	10,5
12 Beverage staggered 320m v4.cs	0,3	358°	27°	-14,5	14,8	-25,6	25,9	46,0	22,5	15,0	350,0	100,0	3,0

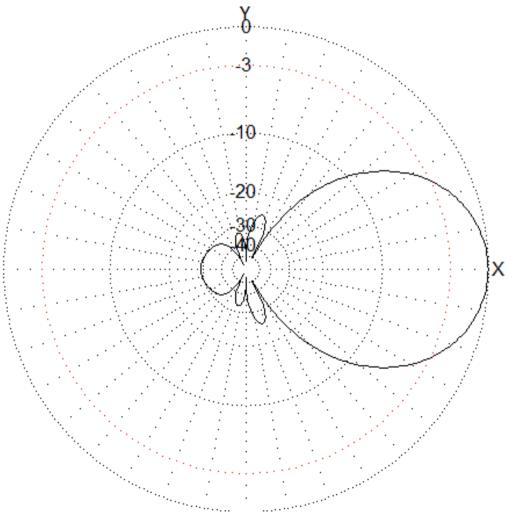
RDF is benchmark 14.8 dB DMF dropped to 25.9 dB from 30.1 dB of 2x LIRA Leaking Index increased to 15% from 4,6%

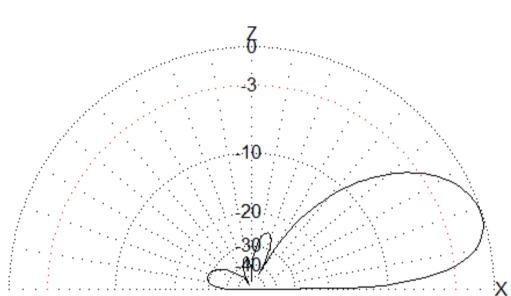
2x LIRA gives a good challenge to staggered beverages of 360x100m as a 83x3m land area antenna

2x LIRA in Picture

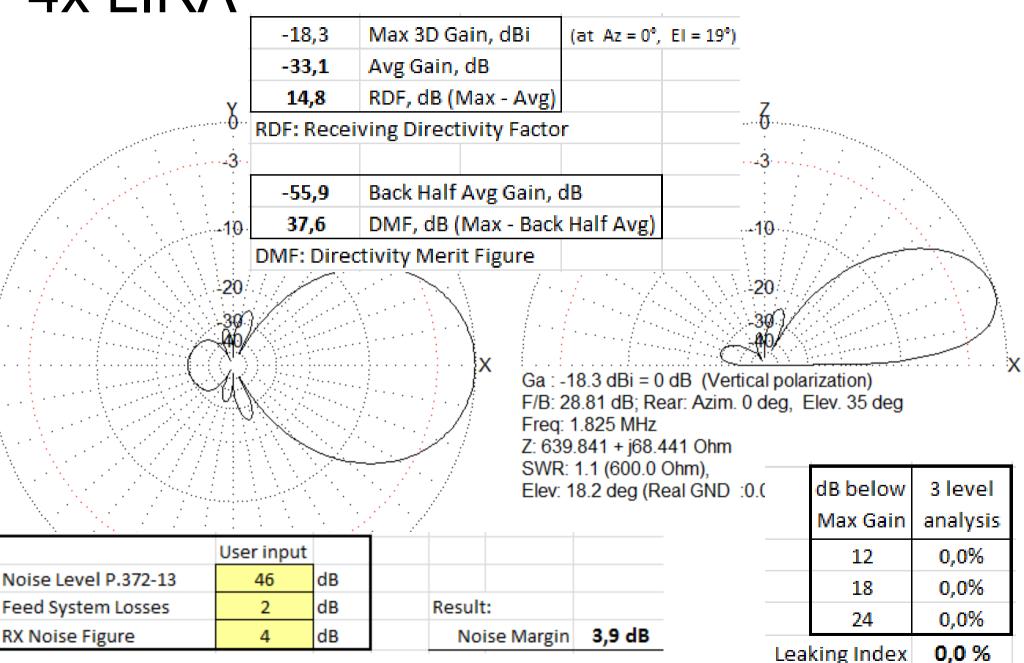
2x LIRA First prototype

Under testing since Dec 2016


Southeastern Finland


Maximum Performance Receiving Antenna $\Lambda_{\mathcal{M}}$

4x LIRA



Ga : -18.3 dBi = 0 dB (Vertical polarization) F/B: 28.81 dB; Rear: Azim. 0 deg, Elev. 35 deg Freq: 1.825 MHz Z: 639.841 + j68.441 Ohm SWR: 1.1 (600.0 Ohm), Elev: 18.2 deg (Real GND :0.00 m height)

Leaking Index

4x LIRA

				dB below Max Gain	
	User input			12	0,0%
Begin at azimuth	80	degrees		18	0,0%
End at azimuth	280	degrees		24	0,0%
			Leal	king Index	0,0 %

4x LIRA

				dB below Max Gain	
	User input			12	0,0%
Begin at azimuth	80	degrees		18	0,0%
End at azimuth	280	degrees		24	0,0%
			Leal	king Index	0,0 %

				dB below Max Gain	
	User input			12	0,0%
Begin at azimuth	70	degrees		18	0,0%
End at azimuth	290	degrees		24	0,0%
			Leal	king Index	0,0 %

4x LIRA

				dB below Max Gain	
	User input			12	0,0%
Begin at azimuth	80	degrees		18	0,0%
End at azimuth	280	degrees		24	0,0%
			Lea	king Index	0,0 %

				dB below Max Gain	
	User input			12	0,0%
Begin at azimuth	70	degrees		18	0,0%
End at azimuth	290	degrees		24	0,0%
			Lea	Leaking Index	

- 					
				dB below	3 level
				Max Gain	analysis
	User input			12	0,0%
Begin at azimuth	50	degrees		18	0,4%
End at azimuth	310	degrees		24	2,5%
			Leal	1,0 %	

						Back		QTH	Noise	Leaking			
	Gmax	At	At	Gaver	RDF	Gaver	DMF	Noise Lvl	Margin	Index	Length	Width	Height
Antenna pattern file name	dBi	Azim	Elev	dB	dB	dB	dB	dB	dB	%	m	m	m
05 Beverage 170m.csv	-7,4	0°	39°	-18,0	10,6	-24,6	17,2	46	19,0	51,4	170,0	2,0	3,0
06 Beverage 250m.csv	-4,6	0°	31°	-16,8	12,2	-24,7	20,1	46	20,2	43,2	250,0	2,0	3,0
07 Twin Triangle v02.csv	-23,3	0°	26°	-34,5	11,2	-43,5	20,1	46	2,5	41,8	58,0	3,0	12,5
08 Smaller Twin Triangle v03.csv	-39,9	0°	25°	-51,4	11,5	-61,7	21,8	64	3,6	34,9	25,0	3,0	9,5
08 Smaller Twin Triangle v03 80m.	-23,2	0°	26°	-34,5	11,3	-43,6	20,3	56	12,5	39,5	25,0	3,0	9,5
10 LIXA proto 201611.csv	-33,5	0°	27°	-43,3	9,9	-53,3	19,9	46	-6,3	46,2	22,8	3,0	7,8
10 LIXA proto 201611 80m.csv	-17,0	0°	31°	-26,3	9,4	-35,8	18,9	38	2,7	43,6	22,8	3,0	7,8
11 2x LIRA v4.csv	-25,7	0°	23°	-37,8	12,1	-55,8	30,1	46	-0,8	4,6	83,0	3,0	10,5
12 Beverage staggered 320m v4.cs	0,3	358°	27°	-14,5	14,8	-25,6	25,9	46,0	22,5	15,0	350,0	100,0	3,0
13 4x LIRA L216 v2.csv	-18,3	0°	19°	-33,1	14,8	-55,9	37,6	46,0	3,9	0,0	216,0	3,0	13,0

RDF is same as staggered long beverages 14.8 dB DMF increased to 37,6 dB – much better than any other antenna Leaking Index 0 %

4x LIRA searches for a test location Excellent usage for 216x3m land area

Maximizing own QTH?

- New tools open up new possibilities in finding the best alternative also to residential QTH operators
- You do not need a big land area to improve
- If you have a big land area, there is room and now also an opportunity for improvement

 Set criteria, compare, choose, design, build and Operate

Conclusion

- One or two numbers alone is too simplified way to look at receiving antenna performance
- Noise Margin is a new amplification metric
- For pattern quality the RDF, DMF, Leaking Index and any combination are now available
- Receiving antenna metrics develop with computing capabilities
- Future: optimizing based on new metrics

Thank You for Listening

• Questions ?

Jukka OH6LI jpklemola@gmail.com